We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin...We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
In this paper a novel multicarrier modulation system called Complex Wavelet Packet Modulation (CWPM) has been proposed. It is based on using the Complex Wavelet Transform (CWT) together with the Wavelet Packet Modulat...In this paper a novel multicarrier modulation system called Complex Wavelet Packet Modulation (CWPM) has been proposed. It is based on using the Complex Wavelet Transform (CWT) together with the Wavelet Packet Modulation (WPM). The proposed system has been tested for communication over flat and frequency selective Rayleigh fading channels and its performance has been compared with some other multicarrier systems. The simulation results show that the performance of the proposed CWPM system has the best performance in all types of channel considered as compared with OFDM, Slantlet based OFDM, FRAT based OFDM and WPM systems. Furthermore, the proposed scheme has less PAPR as compared with the traditional WPM multicarrier system.展开更多
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac...A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.展开更多
A satellite image adaptive restoration method was developed that avoids ringing artifacts at the image boundary and retains oriented features. The method combines periodic plus smooth image decom- position with comple...A satellite image adaptive restoration method was developed that avoids ringing artifacts at the image boundary and retains oriented features. The method combines periodic plus smooth image decom- position with complex wavelet packet transforms. The framework first decomposes a degraded satellite im- age into the sum of a "periodic component" and a "smooth component". The Bayesian method is then used to estimate the modulation transfer function degradation parameters and the noise. The periodic component is deconvoluted using complex wavelet packet transforms with the deconvolution result of the periodic component then combined with the smooth component to get the final recovered result. Tests show that this strategy effectively avoids ringing artifacts while preserving local image details (especially directional tex- tures) without amplifying the noise. Quantitative comparisons illustrate that the results are comparable with previous methods. Another benefit is that this approach can process large satellite images with parallel processing, which is important for practical use.展开更多
为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWP...为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。展开更多
基金CulturalHeritage Protection Program of State Administration of CulturalHeritage (200001).
文摘We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
文摘In this paper a novel multicarrier modulation system called Complex Wavelet Packet Modulation (CWPM) has been proposed. It is based on using the Complex Wavelet Transform (CWT) together with the Wavelet Packet Modulation (WPM). The proposed system has been tested for communication over flat and frequency selective Rayleigh fading channels and its performance has been compared with some other multicarrier systems. The simulation results show that the performance of the proposed CWPM system has the best performance in all types of channel considered as compared with OFDM, Slantlet based OFDM, FRAT based OFDM and WPM systems. Furthermore, the proposed scheme has less PAPR as compared with the traditional WPM multicarrier system.
基金Supported by the National Natural Science Foundation of China(61672032,61401001)the Natural Science Foundation of Anhui Province(1408085MF121)the Opening Foundation of Anhui Key Laboratory of Polarization Imaging Detection Technology(2016-KFKT-003)
文摘A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2007AA120408)
文摘A satellite image adaptive restoration method was developed that avoids ringing artifacts at the image boundary and retains oriented features. The method combines periodic plus smooth image decom- position with complex wavelet packet transforms. The framework first decomposes a degraded satellite im- age into the sum of a "periodic component" and a "smooth component". The Bayesian method is then used to estimate the modulation transfer function degradation parameters and the noise. The periodic component is deconvoluted using complex wavelet packet transforms with the deconvolution result of the periodic component then combined with the smooth component to get the final recovered result. Tests show that this strategy effectively avoids ringing artifacts while preserving local image details (especially directional tex- tures) without amplifying the noise. Quantitative comparisons illustrate that the results are comparable with previous methods. Another benefit is that this approach can process large satellite images with parallel processing, which is important for practical use.
文摘为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。