Background:The simplest and most convenient food technology is the using of dry composite mixtures.They have a lot of advantages.Dry composite mixtures,which would completely be the basis for the production of persona...Background:The simplest and most convenient food technology is the using of dry composite mixtures.They have a lot of advantages.Dry composite mixtures,which would completely be the basis for the production of personalized food concentrates,are not represented.The development of such dry composite mixtures is actual and of scientific and practical interest.The purpose of this research is the selection and justification of local import-substituting raw materials components for dry composite mixtures used as the basis for the production of food concentrates.As the objects of research,the raw materials components of the starch,fruit and vegetable,industry were selected.The work uses currently accepted standard research methods for organoleptic and physic-chemical parameters of raw materials components.The research was carried out within of the project“Theoretical Substantiation of Production Technology and the Development of Import-Substituting Food Products of Functional Purpose Based on Dry Composite Mixtures”,funded by the Belarusian Republican Foundation for Basic Research.Based on the researches,it was found out that in the composition of dry composite mixtures for the production of food concentrates it is expedient to use the following raw materials:potato starch,extruded corn starch,dried carrots,dried beets,dried topinambur and dried apples in chopped form.展开更多
A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% ...A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% was successfully fabricated. Plasma relevant performances of sintered B4C/Cu composite were preliminarily characterized, it is found that its chemical sputtering yield is 70% lower than that of SMF800 nuclear graphite under 2.7keV D+ irradiation, and almost no damages after 66 shots of in situ plasma discharge in HL-1 Tokamak facility, which indicates B4C/Cu plasma facing component has a good physical and chemical sputtering resistance performance compared with nuclear graphite.展开更多
Hydrogen absorption composite powder of Mg incorporated with Ni and CrCl3 (88∶10∶2 in mass ratio) was prepared by reactive milling in hydrogen atmosphere. Hydriding/dehydriding performances were measured by self-m...Hydrogen absorption composite powder of Mg incorporated with Ni and CrCl3 (88∶10∶2 in mass ratio) was prepared by reactive milling in hydrogen atmosphere. Hydriding/dehydriding performances were measured by self-made apparatus. The results show that reactive milling and multi-component addition of Ni and CrCl3 reduce the stability of hydride and improve the sorption performance of Mg-based materials. With powder milled for 60h, hydriding basically completes within 300s (250℃, 2.0MPa) and phase transformation fraction reaches 0.78. The phase transformation rate of hydriding/dehydriding progress increases significantly with the reduced particles size of powder while good kinetics of dehydriding at a relatively low temperature is gained with small grain size of hydride. Rapid temperature variations in a short span of time resulted from remarkable calorific effects of rapid phase transformation are detected in hydriding/dehydriding progress. The results of thermogravimetric and differential scanning calorimetric(TG/DSC) indicate that the onset temperature of desorption of composite milled for 100h is 272℃.展开更多
Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensi...Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensions of fiber-reinforced composite materials will expand explosively,bringing challenges to the efficient analysis and optimal design of structures.In this paper,the authors propose an explicit topology optimization method based on the moving morphable components for designing the fiber-reinforced material.We constrain the intersection area between components to guarantee the independence of each component and avoid the situation that one component is cut by other components.Adding the fiber orientation angle as a design variable,the method can optimize the structural layout and the fiber orientation angle concurrently under the given number of fiber layers and layer thickness.We use two classical examples to verify the feasibility and accuracy of the proposed method.The optimized results are in good agreement with the designs obtained by the 99-line code.The authors also popularize the proposed method to engineering structure.The results manifest that the proposed method has great value in engineering application.展开更多
文摘Background:The simplest and most convenient food technology is the using of dry composite mixtures.They have a lot of advantages.Dry composite mixtures,which would completely be the basis for the production of personalized food concentrates,are not represented.The development of such dry composite mixtures is actual and of scientific and practical interest.The purpose of this research is the selection and justification of local import-substituting raw materials components for dry composite mixtures used as the basis for the production of food concentrates.As the objects of research,the raw materials components of the starch,fruit and vegetable,industry were selected.The work uses currently accepted standard research methods for organoleptic and physic-chemical parameters of raw materials components.The research was carried out within of the project“Theoretical Substantiation of Production Technology and the Development of Import-Substituting Food Products of Functional Purpose Based on Dry Composite Mixtures”,funded by the Belarusian Republican Foundation for Basic Research.Based on the researches,it was found out that in the composition of dry composite mixtures for the production of food concentrates it is expedient to use the following raw materials:potato starch,extruded corn starch,dried carrots,dried beets,dried topinambur and dried apples in chopped form.
基金This work was financially supported by "863 " key foundation of China (No. 715-011-0230).
文摘A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% was successfully fabricated. Plasma relevant performances of sintered B4C/Cu composite were preliminarily characterized, it is found that its chemical sputtering yield is 70% lower than that of SMF800 nuclear graphite under 2.7keV D+ irradiation, and almost no damages after 66 shots of in situ plasma discharge in HL-1 Tokamak facility, which indicates B4C/Cu plasma facing component has a good physical and chemical sputtering resistance performance compared with nuclear graphite.
文摘Hydrogen absorption composite powder of Mg incorporated with Ni and CrCl3 (88∶10∶2 in mass ratio) was prepared by reactive milling in hydrogen atmosphere. Hydriding/dehydriding performances were measured by self-made apparatus. The results show that reactive milling and multi-component addition of Ni and CrCl3 reduce the stability of hydride and improve the sorption performance of Mg-based materials. With powder milled for 60h, hydriding basically completes within 300s (250℃, 2.0MPa) and phase transformation fraction reaches 0.78. The phase transformation rate of hydriding/dehydriding progress increases significantly with the reduced particles size of powder while good kinetics of dehydriding at a relatively low temperature is gained with small grain size of hydride. Rapid temperature variations in a short span of time resulted from remarkable calorific effects of rapid phase transformation are detected in hydriding/dehydriding progress. The results of thermogravimetric and differential scanning calorimetric(TG/DSC) indicate that the onset temperature of desorption of composite milled for 100h is 272℃.
基金supports from the National Key Research and Development Plan(2020YFB1709401)the National Natural Science Foundation of China(11872138,11702048),Dalian Young TechStar Project(2019RQ045,2019RQ069)and the Scientific Research Fund Project of Education Department of Liaoning Province(JDL2020021).
文摘Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensions of fiber-reinforced composite materials will expand explosively,bringing challenges to the efficient analysis and optimal design of structures.In this paper,the authors propose an explicit topology optimization method based on the moving morphable components for designing the fiber-reinforced material.We constrain the intersection area between components to guarantee the independence of each component and avoid the situation that one component is cut by other components.Adding the fiber orientation angle as a design variable,the method can optimize the structural layout and the fiber orientation angle concurrently under the given number of fiber layers and layer thickness.We use two classical examples to verify the feasibility and accuracy of the proposed method.The optimized results are in good agreement with the designs obtained by the 99-line code.The authors also popularize the proposed method to engineering structure.The results manifest that the proposed method has great value in engineering application.