运用F ractiona l F actoria l方法从众多的实验因子中初步筛选出与制品质量密切相关的若干个独立因子和交互因子。在此基础上应用T aguch i实验技术,采用L27正交矩阵进行实验,将这些因子进一步优化,从而为注射工艺参数的合理选取提供...运用F ractiona l F actoria l方法从众多的实验因子中初步筛选出与制品质量密切相关的若干个独立因子和交互因子。在此基础上应用T aguch i实验技术,采用L27正交矩阵进行实验,将这些因子进一步优化,从而为注射工艺参数的合理选取提供科学依据。展开更多
针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性...针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子.展开更多
Supersaturated designs are useful in screening experiments. This paper discusses the topic of multi-level supersaturated design. Two quantities, E(d2) and Df, are proposed to evaluate the optimality of supersaturated ...Supersaturated designs are useful in screening experiments. This paper discusses the topic of multi-level supersaturated design. Two quantities, E(d2) and Df, are proposed to evaluate the optimality of supersaturated designs. A lower bound of E(d2) is obtained with a necessary condition for achieving it. Some E(d2)-optimal supersaturated designs of 3, 4, and 5 levels are given.展开更多
文摘针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子.
文摘Supersaturated designs are useful in screening experiments. This paper discusses the topic of multi-level supersaturated design. Two quantities, E(d2) and Df, are proposed to evaluate the optimality of supersaturated designs. A lower bound of E(d2) is obtained with a necessary condition for achieving it. Some E(d2)-optimal supersaturated designs of 3, 4, and 5 levels are given.