In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control se...In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.展开更多
A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for th...A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.展开更多
Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching ti...Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.展开更多
International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason,...International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason, operating of AC-DC converters with high power factor and low line current distortion has become essential. In this paper, the prototypal realization of a three-phase AC-DC 48 V power electronic converter for telecom system supplying is described and experimental testing results are discussed. The main constraints in the power supply design are the required power density of about 900 W per dm3 as well as the absence of the neutral wire in the supply grid. The carried out investigation is focused on three-level power converter configurations which are considered in order to reduce voltage rating of power switches. As a result of the reduced voltage, low on-resistance metal-oxide-semiconductor field effect transistors can be used in the power stage, solution which allows to achieve improved efficiency as well as increased switching frequency with respect to the insulated gate bipolar transistors based two-level topologies.展开更多
文摘In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.
基金Project(61074018)supported by the National Natural Science Foundation of ChinaProject(2012kfjj06)supported by Hunan Province Key Laboratory of Smart Grids Operation and Control(Changsha University of Science and Technology),China
文摘A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.
基金supported in part by National Natural Science Foundation of China(No.52177193)in part by China Scholarship Council(CSC)State Scholarship Fund International Clean Energy Talent Project(No.[2019]157)。
文摘Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.
文摘International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason, operating of AC-DC converters with high power factor and low line current distortion has become essential. In this paper, the prototypal realization of a three-phase AC-DC 48 V power electronic converter for telecom system supplying is described and experimental testing results are discussed. The main constraints in the power supply design are the required power density of about 900 W per dm3 as well as the absence of the neutral wire in the supply grid. The carried out investigation is focused on three-level power converter configurations which are considered in order to reduce voltage rating of power switches. As a result of the reduced voltage, low on-resistance metal-oxide-semiconductor field effect transistors can be used in the power stage, solution which allows to achieve improved efficiency as well as increased switching frequency with respect to the insulated gate bipolar transistors based two-level topologies.