Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching ti...Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.展开更多
In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control se...In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.展开更多
A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for th...A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.展开更多
This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules al...This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC.展开更多
International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason,...International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason, operating of AC-DC converters with high power factor and low line current distortion has become essential. In this paper, the prototypal realization of a three-phase AC-DC 48 V power electronic converter for telecom system supplying is described and experimental testing results are discussed. The main constraints in the power supply design are the required power density of about 900 W per dm3 as well as the absence of the neutral wire in the supply grid. The carried out investigation is focused on three-level power converter configurations which are considered in order to reduce voltage rating of power switches. As a result of the reduced voltage, low on-resistance metal-oxide-semiconductor field effect transistors can be used in the power stage, solution which allows to achieve improved efficiency as well as increased switching frequency with respect to the insulated gate bipolar transistors based two-level topologies.展开更多
A novel 12 voltage vector control strategy for switched reluctance motors(SRM)with a T-type three-level converter is proposed in this study.Based on a causal analysis of torque ripple under the control of conventional...A novel 12 voltage vector control strategy for switched reluctance motors(SRM)with a T-type three-level converter is proposed in this study.Based on a causal analysis of torque ripple under the control of conventional six voltage vectors,six new voltage vectors are added for further reduction of torque ripple.An optimized control rule is adopted based on the division method of the 12 new voltage vectors.A zero-voltage vector is used to adjust the duration of the 12 voltage vectors,the time of which is varied at different parts of the vector sectors according to the torque error.In addition,the windings are connected in a delta configuration,therefore,the number of connections between the converter and SRM is reduced.Finally,the results of MATLAB/Simulink and RT-LAB are presented to verify the validity of the proposed scheme.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
A novel three-level zero-voltage zero-current switching(ZVZCS)DC/DC converter is proposed in this paper.A tapped-inductor is used to replace the normal out-put filter inductor,so that the circulating current in the ze...A novel three-level zero-voltage zero-current switching(ZVZCS)DC/DC converter is proposed in this paper.A tapped-inductor is used to replace the normal out-put filter inductor,so that the circulating current in the zero-state can be reset to zero.The reset voltage and the re-set time can be set conveniently just by simply changing the winding ratio of the tapped inductor.The converter achieves a zero-current tuning off for inner switching,and a zero-voltage tuning on for outer switching.No circulating current exists in the zero state,so that the loss in the on-state is reduced,and the efficiency can be improved.The experimental results verify that the ZVZCS has low voltage stress,zero-voltage and zero-current switching.展开更多
In this paper,the performance of a permanent magnet synchronous generator(PMSG)-based wind energy conversion system(WECS)supplied to an uncontrolled rectifier-fed boost converter(BC)interfaced with a three-phase T-typ...In this paper,the performance of a permanent magnet synchronous generator(PMSG)-based wind energy conversion system(WECS)supplied to an uncontrolled rectifier-fed boost converter(BC)interfaced with a three-phase T-type three-level inverter(TLI)has been analysed.The proposed WECS involves three converters,namely an uncontrolled rectifier that is used for conversion from AC to DC;a BC supplied by a PMSG-fed rectifier used to enhance the voltage gain;and a grid-connected three-phase T-type TLI is proposed to eliminate power-quality issues with synchronization of grid voltage and current.The main goal of this research is to model and control the grid-connected T-type TLI using a d-q synchronous frame for wind energy for regulating the DC-link voltage and transferring the generated wind power from the BC to the grid.Furthermore,the perturb&observe(P&O)-based maximum power point(MPP)approach is recommended to keep track of the MPP for a BC that is supplied from a PMSG-based WECS under constant and variable wind speeds.The proposed PMSG-based WECS interfaced with grid-connected T-type TLI using d-q control has been computationally modelled,simulated and validated with constant and variable speeds using MATLAB®and Simulink®.It is confirmed that the P&O-based MPP approach ensures maximum power for varying wind speeds,and the total harmonic distortion of the T-type TLI grid current value is 3.18%,which is within IEEE-519 limits.Furthermore,with grid synchronization,the power factor of the T-type TLI is maintained at unity to avoid power-quality issues.展开更多
The traditional PI controller for a hybrid energy storage system(HESS)has certain drawbacks,such as difficult tuning of the controller parameters and the additional filters to allocate high-and low-frequency power flu...The traditional PI controller for a hybrid energy storage system(HESS)has certain drawbacks,such as difficult tuning of the controller parameters and the additional filters to allocate high-and low-frequency power fluctuations.This paper proposes a model predictive control(MPC)method to control three-level bidirectional DC/DC converters for grid-connections to a HESS in a DC microgrid.First,the mathematical model of a HESS consisting of a battery and ultra capacitor(UC)is established and the neutral point voltage imbalance of a three-level converter is solved by analyzing the operating modes of the converter.Secondly,for the control of the grid-connected converters,an MPC method is proposed for calculating steady-state reference values in the outer layer and the dynamic rolling optimization in the inner layer.The outer layer ensures the voltage regulation and establishes the current predictive model,while the inner layer,using the model predictive current control,makes the current follow the predictive value,thus reducing the system current ripple.This cascaded topology has two independent controllers and is free of filters to realize the high-and low-frequency power allocation for a HESS.Therefore,it allows two types of energy storage devices to independently regulate the voltage and realizes the power allocation of the battery and UC.Finally,simulation studies are conducted in PSCAD/EMTDC,and the effectiveness of the proposed HESS control strategy is verified in a case,such as a controller comparison and fault scenario.展开更多
基金supported in part by National Natural Science Foundation of China(No.52177193)in part by China Scholarship Council(CSC)State Scholarship Fund International Clean Energy Talent Project(No.[2019]157)。
文摘Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.
文摘In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.
基金Project(61074018)supported by the National Natural Science Foundation of ChinaProject(2012kfjj06)supported by Hunan Province Key Laboratory of Smart Grids Operation and Control(Changsha University of Science and Technology),China
文摘A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.
基金supported by Key Science and Technology Project of China Southern Power Grid(Research on Key Technologies and Demonstration Application of Flexible Coordinated Control of Electromagnetic Loop Network in Metropolitan Power Grid with High Load Density,No.GZHKJ00000101)
文摘This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC.
文摘International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason, operating of AC-DC converters with high power factor and low line current distortion has become essential. In this paper, the prototypal realization of a three-phase AC-DC 48 V power electronic converter for telecom system supplying is described and experimental testing results are discussed. The main constraints in the power supply design are the required power density of about 900 W per dm3 as well as the absence of the neutral wire in the supply grid. The carried out investigation is focused on three-level power converter configurations which are considered in order to reduce voltage rating of power switches. As a result of the reduced voltage, low on-resistance metal-oxide-semiconductor field effect transistors can be used in the power stage, solution which allows to achieve improved efficiency as well as increased switching frequency with respect to the insulated gate bipolar transistors based two-level topologies.
基金Supported by the National Natural Science Foundation of China(51977054).
文摘A novel 12 voltage vector control strategy for switched reluctance motors(SRM)with a T-type three-level converter is proposed in this study.Based on a causal analysis of torque ripple under the control of conventional six voltage vectors,six new voltage vectors are added for further reduction of torque ripple.An optimized control rule is adopted based on the division method of the 12 new voltage vectors.A zero-voltage vector is used to adjust the duration of the 12 voltage vectors,the time of which is varied at different parts of the vector sectors according to the torque error.In addition,the windings are connected in a delta configuration,therefore,the number of connections between the converter and SRM is reduced.Finally,the results of MATLAB/Simulink and RT-LAB are presented to verify the validity of the proposed scheme.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
文摘A novel three-level zero-voltage zero-current switching(ZVZCS)DC/DC converter is proposed in this paper.A tapped-inductor is used to replace the normal out-put filter inductor,so that the circulating current in the zero-state can be reset to zero.The reset voltage and the re-set time can be set conveniently just by simply changing the winding ratio of the tapped inductor.The converter achieves a zero-current tuning off for inner switching,and a zero-voltage tuning on for outer switching.No circulating current exists in the zero state,so that the loss in the on-state is reduced,and the efficiency can be improved.The experimental results verify that the ZVZCS has low voltage stress,zero-voltage and zero-current switching.
文摘In this paper,the performance of a permanent magnet synchronous generator(PMSG)-based wind energy conversion system(WECS)supplied to an uncontrolled rectifier-fed boost converter(BC)interfaced with a three-phase T-type three-level inverter(TLI)has been analysed.The proposed WECS involves three converters,namely an uncontrolled rectifier that is used for conversion from AC to DC;a BC supplied by a PMSG-fed rectifier used to enhance the voltage gain;and a grid-connected three-phase T-type TLI is proposed to eliminate power-quality issues with synchronization of grid voltage and current.The main goal of this research is to model and control the grid-connected T-type TLI using a d-q synchronous frame for wind energy for regulating the DC-link voltage and transferring the generated wind power from the BC to the grid.Furthermore,the perturb&observe(P&O)-based maximum power point(MPP)approach is recommended to keep track of the MPP for a BC that is supplied from a PMSG-based WECS under constant and variable wind speeds.The proposed PMSG-based WECS interfaced with grid-connected T-type TLI using d-q control has been computationally modelled,simulated and validated with constant and variable speeds using MATLAB®and Simulink®.It is confirmed that the P&O-based MPP approach ensures maximum power for varying wind speeds,and the total harmonic distortion of the T-type TLI grid current value is 3.18%,which is within IEEE-519 limits.Furthermore,with grid synchronization,the power factor of the T-type TLI is maintained at unity to avoid power-quality issues.
基金supported in part by the State Grid Corporation of China under Grant No.521500190017.
文摘The traditional PI controller for a hybrid energy storage system(HESS)has certain drawbacks,such as difficult tuning of the controller parameters and the additional filters to allocate high-and low-frequency power fluctuations.This paper proposes a model predictive control(MPC)method to control three-level bidirectional DC/DC converters for grid-connections to a HESS in a DC microgrid.First,the mathematical model of a HESS consisting of a battery and ultra capacitor(UC)is established and the neutral point voltage imbalance of a three-level converter is solved by analyzing the operating modes of the converter.Secondly,for the control of the grid-connected converters,an MPC method is proposed for calculating steady-state reference values in the outer layer and the dynamic rolling optimization in the inner layer.The outer layer ensures the voltage regulation and establishes the current predictive model,while the inner layer,using the model predictive current control,makes the current follow the predictive value,thus reducing the system current ripple.This cascaded topology has two independent controllers and is free of filters to realize the high-and low-frequency power allocation for a HESS.Therefore,it allows two types of energy storage devices to independently regulate the voltage and realizes the power allocation of the battery and UC.Finally,simulation studies are conducted in PSCAD/EMTDC,and the effectiveness of the proposed HESS control strategy is verified in a case,such as a controller comparison and fault scenario.