Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
In order to compensate for the deficiency of Sine Pulse Width Modulation(SPWM), on the base of analyzing the principle of space w tot pulse width modulation and being compared with SPWM, the method of solving workin...In order to compensate for the deficiency of Sine Pulse Width Modulation(SPWM), on the base of analyzing the principle of space w tot pulse width modulation and being compared with SPWM, the method of solving working time of adjacent vector and the method of generate space voltage vector were introduced. The experiment to the inverter which consists of IGBT proves that SVPWM centrol algorithm can reduce harmonic effectively, it is beneficial to enhancing the utilization rate of voltage source inverter direct current power supply.展开更多
Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily e...Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily exist in the direct parallel converters. In this paper, the average model of parallel interleaved inverters system to analyze the circulation current is shown, and the cross current is relevant to DC-bus voltage and the overlap time of zero vectors in the switching period. Based on this observation, a discontinuous space vector modulation without using zero vectors (000) is eliminate and suppress the zero-sequence current to entire system. Finally, the effectiveness of modulation strategy is verified by the simulations in this paper.展开更多
Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of ...Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of the voltage space vector is one of the weakest focuses in a routine DTC drive because of adjustable switching frequency and high torque ripple. In this paper, ideal choice of voltage space vectors is accomplished utilizing ANFIS (Adaptive Neuro Fuzzy Inference System) with space vector Modulation. SVM-DTC gives consistent switching frequency and the proposed ANFIS controller’s structure manages the torque and stator flux error signals through the fuzzy deduction to get a yield that takes the type of space voltage vector. Simulation results accept the proposed evolutionary system with quick torque and flux reaction with minimized torque ripple and flux ripple.展开更多
With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more serio...With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.展开更多
This paper presents frequency domain method for harmonic analysis of space vector based STATCOM. Space Vector Pulse Width Modulation (SVPWM) method is an advanced PWM method. It is a best method among all the PWM tech...This paper presents frequency domain method for harmonic analysis of space vector based STATCOM. Space Vector Pulse Width Modulation (SVPWM) method is an advanced PWM method. It is a best method among all the PWM techniques. It provides a freedom in a switching cycle for placement space vector. In this paper, the SVPWM is used for switching of STATCOM. The harmonic (or frequency) domain is a steady-state form of harmonic analysis method, which represents converters to their harmonic spectra. This paper presents harmonic analysis by means of harmonic domain for space vector based Static shunt converter (STATCOM). Performance of the STATCOM is evaluated in harmonic domain simulation studies in MATLAB environment.展开更多
This paper presents analytical frequency domain method for harmonic modeling and evaluation of Space Vector Pulse Width Modulation (SVPWM) based static synchronous series converter (SSSC). SVPWM is the best among all ...This paper presents analytical frequency domain method for harmonic modeling and evaluation of Space Vector Pulse Width Modulation (SVPWM) based static synchronous series converter (SSSC). SVPWM is the best among all the PWM techniques. It gives a degree of freedom of space vector placement in a switching cycle. Dynamic modeling technique is used for space vector modulation (SVM) based voltage source converter that is adapted as a static synchronous series converter (SSSC) for harmonic analysis using dynamic harmonic domain. Performance of the SSSC is evaluated in dynamic harmonic domain simulation studies in MATLAB environment. The switching function spectra are necessary for harmonic transfer matrix which is calculated using Fourier series. This paper presents the analysis of harmonics for space vector based SSSC during steady state and dynamic condition.展开更多
In this paper, an improved hybrid space vector pulse width modulation (HSVPWM) technique is proposed for IM (induction motor) drives. The basic principle involved in the proposed random pulse width modulation (RPWM) c...In this paper, an improved hybrid space vector pulse width modulation (HSVPWM) technique is proposed for IM (induction motor) drives. The basic principle involved in the proposed random pulse width modulation (RPWM) cuddled SVPWM is amalgamating the pre-calculated switching timings for various sections of hexagonal space vector boundary and the random selection of carrier between two triangular signals, in order to disband acoustic switching noise spectrum with improved fundamental component. The arbitrary selection between triangular carriers, which is decided by digital signal states (Low or High) of the linear feedback shift register (LFSR) based pseudo random binary sequence (PRBS) generator. The SVPWM offers a control degree of freedom in terms of positioning of vectors inside every sampling interval and hence it has six possible variants of the voltage vectors arrangements in each sector. The developed HSVPWM is thoroughly analyzed in using the MATLAB? based simulation for all SVPWM variants. From the simulation and experimental results viz. harmonic spectrum, harmonic spread factor (HSF), total harmonic distortion (THD) etc., and the superiority of the proposed scheme such as better utilization of DC bus and the randomization of the harmonic power are evidenced. For the practical implementation, Xilinx XC3S500E FPGA device has been used.展开更多
针对传统电流梯度更新的无参数预测电流控制(parameter-free predictive current control,PFPCC)存在电流梯度更新停滞及电流脉动大的问题,提出一种基于离散空间矢量调制(discrete space vector modulation,DSVM)的PFPCC优化方法。首先...针对传统电流梯度更新的无参数预测电流控制(parameter-free predictive current control,PFPCC)存在电流梯度更新停滞及电流脉动大的问题,提出一种基于离散空间矢量调制(discrete space vector modulation,DSVM)的PFPCC优化方法。首先,通过分析不同电压矢量在α-β轴上的电流梯度关系,得到相邻两个控制周期内各电压矢量与电流梯度的数学关系;然后,在一个控制周期内更新所有电压矢量的电流梯度,有效减小了传统PFPCC中的停滞效应。为了进一步减小电流脉动,将DSVM引入到所提方法中。结合DSVM选矢量的方式,以较小计算量即可将所有的电流梯度更新,从而保证电流预测的可靠性和准确性。实验结果表明:所提PFPCC方法与基于模型的预测电流控制相比,具有类似的动静态性能。与单矢量PFPCC相比,DSVM-PFPCC方法在保证动静态性能的同时,能够显著减小电流脉动,提高在实际系统中的控制性能。展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
文摘In order to compensate for the deficiency of Sine Pulse Width Modulation(SPWM), on the base of analyzing the principle of space w tot pulse width modulation and being compared with SPWM, the method of solving working time of adjacent vector and the method of generate space voltage vector were introduced. The experiment to the inverter which consists of IGBT proves that SVPWM centrol algorithm can reduce harmonic effectively, it is beneficial to enhancing the utilization rate of voltage source inverter direct current power supply.
文摘Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily exist in the direct parallel converters. In this paper, the average model of parallel interleaved inverters system to analyze the circulation current is shown, and the cross current is relevant to DC-bus voltage and the overlap time of zero vectors in the switching period. Based on this observation, a discontinuous space vector modulation without using zero vectors (000) is eliminate and suppress the zero-sequence current to entire system. Finally, the effectiveness of modulation strategy is verified by the simulations in this paper.
文摘Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of the voltage space vector is one of the weakest focuses in a routine DTC drive because of adjustable switching frequency and high torque ripple. In this paper, ideal choice of voltage space vectors is accomplished utilizing ANFIS (Adaptive Neuro Fuzzy Inference System) with space vector Modulation. SVM-DTC gives consistent switching frequency and the proposed ANFIS controller’s structure manages the torque and stator flux error signals through the fuzzy deduction to get a yield that takes the type of space voltage vector. Simulation results accept the proposed evolutionary system with quick torque and flux reaction with minimized torque ripple and flux ripple.
基金Supported by Application Technology Research and Development of Harbin City(2017RAXXJ075)。
文摘With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.
文摘This paper presents frequency domain method for harmonic analysis of space vector based STATCOM. Space Vector Pulse Width Modulation (SVPWM) method is an advanced PWM method. It is a best method among all the PWM techniques. It provides a freedom in a switching cycle for placement space vector. In this paper, the SVPWM is used for switching of STATCOM. The harmonic (or frequency) domain is a steady-state form of harmonic analysis method, which represents converters to their harmonic spectra. This paper presents harmonic analysis by means of harmonic domain for space vector based Static shunt converter (STATCOM). Performance of the STATCOM is evaluated in harmonic domain simulation studies in MATLAB environment.
文摘This paper presents analytical frequency domain method for harmonic modeling and evaluation of Space Vector Pulse Width Modulation (SVPWM) based static synchronous series converter (SSSC). SVPWM is the best among all the PWM techniques. It gives a degree of freedom of space vector placement in a switching cycle. Dynamic modeling technique is used for space vector modulation (SVM) based voltage source converter that is adapted as a static synchronous series converter (SSSC) for harmonic analysis using dynamic harmonic domain. Performance of the SSSC is evaluated in dynamic harmonic domain simulation studies in MATLAB environment. The switching function spectra are necessary for harmonic transfer matrix which is calculated using Fourier series. This paper presents the analysis of harmonics for space vector based SSSC during steady state and dynamic condition.
文摘In this paper, an improved hybrid space vector pulse width modulation (HSVPWM) technique is proposed for IM (induction motor) drives. The basic principle involved in the proposed random pulse width modulation (RPWM) cuddled SVPWM is amalgamating the pre-calculated switching timings for various sections of hexagonal space vector boundary and the random selection of carrier between two triangular signals, in order to disband acoustic switching noise spectrum with improved fundamental component. The arbitrary selection between triangular carriers, which is decided by digital signal states (Low or High) of the linear feedback shift register (LFSR) based pseudo random binary sequence (PRBS) generator. The SVPWM offers a control degree of freedom in terms of positioning of vectors inside every sampling interval and hence it has six possible variants of the voltage vectors arrangements in each sector. The developed HSVPWM is thoroughly analyzed in using the MATLAB? based simulation for all SVPWM variants. From the simulation and experimental results viz. harmonic spectrum, harmonic spread factor (HSF), total harmonic distortion (THD) etc., and the superiority of the proposed scheme such as better utilization of DC bus and the randomization of the harmonic power are evidenced. For the practical implementation, Xilinx XC3S500E FPGA device has been used.
文摘针对传统电流梯度更新的无参数预测电流控制(parameter-free predictive current control,PFPCC)存在电流梯度更新停滞及电流脉动大的问题,提出一种基于离散空间矢量调制(discrete space vector modulation,DSVM)的PFPCC优化方法。首先,通过分析不同电压矢量在α-β轴上的电流梯度关系,得到相邻两个控制周期内各电压矢量与电流梯度的数学关系;然后,在一个控制周期内更新所有电压矢量的电流梯度,有效减小了传统PFPCC中的停滞效应。为了进一步减小电流脉动,将DSVM引入到所提方法中。结合DSVM选矢量的方式,以较小计算量即可将所有的电流梯度更新,从而保证电流预测的可靠性和准确性。实验结果表明:所提PFPCC方法与基于模型的预测电流控制相比,具有类似的动静态性能。与单矢量PFPCC相比,DSVM-PFPCC方法在保证动静态性能的同时,能够显著减小电流脉动,提高在实际系统中的控制性能。