Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot...Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.展开更多
In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, ...In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, namely the Benchmark, input/output, Marion, Cristo-fri, Kroposki, Jones-Underwood and Hatziargyriou prediction models, which depend exclusively on environmental parameters. We then compared our linear model with these seven mathematical models in order to determine the most optimal prediction model. Our results show that the Hatziargyriou model is better in terms of accuracy for power prediction.展开更多
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
This paper applies weighted least square method to estimate the three-parameter power function equation of the fatigue life curve, and uses comprehensive fatigue life coefficient to correct the equation, and at the sa...This paper applies weighted least square method to estimate the three-parameter power function equation of the fatigue life curve, and uses comprehensive fatigue life coefficient to correct the equation, and at the same time combines probability statistics method to bring out the prediction method of structure's three- parameter power function P-S-N curve, finally applies the prediction method to a ship's frame-type elevate, based on the fatigue test data of it's material-SA06 aluminium alloy, to obtain it's structure's three-parameter power function P-S-N curve. Compared with the conventional least square method, the presented method can give展开更多
The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carr...The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carried out.Based on the experimental data,a ternary quadratic regression equation was established by orthogonal experiment.The Ramberg-Osgood constitutive model of tin-bronze connecting rod bushing was obtained.Referred to the constitutive relation of macroscopic incremental,the incremental elastoplastic constitutive relation of spinning parts was deduced based on the Mises yield criterion and kinematic hardening model.The results can be applied to the elastoplastic analysis in finite element numerical simulation.展开更多
We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underes...We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underestimated by 52 % if thermal effects are omitted. Furthermore, an inconsistency arises when energy and temperature are simultaneously optimized by dynamic voltage scaling. Temperature is a limiting factor for future integrated circuits,and the thermal optimization approach can attain a temperature reduction of up to 12℃ with less than 1.8% energy penalty compared with the energy optimization one.展开更多
To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and intern...To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.展开更多
Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro...Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.展开更多
A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the paramet...A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.展开更多
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr...This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.展开更多
A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces com...A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces computation time by 10.7% compared with previous methods. Furthermore,a primary input critical factor model that captures the extent of primary inputs' PSN contribution is formulated. Based on these models,a novel niche genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this novel method can achieve up to 19.0% improvement on PSN estimation with a much higher convergence speed.展开更多
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing acros...The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.展开更多
One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish au...One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.展开更多
The ride comfort experimental assessment of crawler off-road vehicle is relatively overlooked, and is expensive and difficult to execute with higher and higher ride comfort performance requirements. To trade off betwe...The ride comfort experimental assessment of crawler off-road vehicle is relatively overlooked, and is expensive and difficult to execute with higher and higher ride comfort performance requirements. To trade off between precise and cost, an experimental method based on the similitude theory is proposed. Under the guidance of the similitude theory, a 1:5 crawler power chassis scale model equipped with a kind of variable stiffness suspension system is used. The power spectrum density(PSD), the root mean square(RMS) of weighed acceleration, peak factor, average absorbed power(AAP) and vibration dose value(VDV) are selected as ride comfort evaluation indexes, and tests results are transformed via similarity indexes to predict the performance of full-scale power chassis. PSD shows that the low-order natural frequency of the vertical natural frequency(z axis) is 1.1 Hz, and the RMS, AAP and VDV values indicate the ride comfort performance of this kind of power chassis is between the "A little uncomfortable" and "Rather uncomfortable". From the results, low-order vertical natural frequency, obtained by PSD, validates that the similarity relationship between two models is satisfied, and 1:5 scale model used in experiment meets the similarity relationship with the full-scale model; consequently, the ride comfort prophase evaluation with the 1:5 scale model is feasible. The attempt of applying the similitude theory to crawler vehicle ride comfort test study decreases the cost and improves the test feasibility with sufficient test precise.展开更多
Based on real time price counting of electric power, an optimization model of time sharing power for electrolytic zinc process(EZP) was established by means of an incremental fuzzy neural network(FNN), which is adopte...Based on real time price counting of electric power, an optimization model of time sharing power for electrolytic zinc process(EZP) was established by means of an incremental fuzzy neural network(FNN), which is adopted to approximate the relationship of current efficiency, current density and acidity. Penalty function introduced and optimal objective function reconstructed, a single loop simulated annealing algorithm(SAA) by using mutation and extending searching spaces was used to obtain optimal time sharing power scheme. Industrial practical results show that the whole system can greatly decrease the power consumption of EZP and increase the time sharing profits.展开更多
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise...Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.展开更多
Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatica...Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.展开更多
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi...Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method.展开更多
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
文摘Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.
文摘In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, namely the Benchmark, input/output, Marion, Cristo-fri, Kroposki, Jones-Underwood and Hatziargyriou prediction models, which depend exclusively on environmental parameters. We then compared our linear model with these seven mathematical models in order to determine the most optimal prediction model. Our results show that the Hatziargyriou model is better in terms of accuracy for power prediction.
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
文摘This paper applies weighted least square method to estimate the three-parameter power function equation of the fatigue life curve, and uses comprehensive fatigue life coefficient to correct the equation, and at the same time combines probability statistics method to bring out the prediction method of structure's three- parameter power function P-S-N curve, finally applies the prediction method to a ship's frame-type elevate, based on the fatigue test data of it's material-SA06 aluminium alloy, to obtain it's structure's three-parameter power function P-S-N curve. Compared with the conventional least square method, the presented method can give
基金Project(2012011023-2)supported by the Natural Science Foundation of Shanxi Province,China
文摘The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carried out.Based on the experimental data,a ternary quadratic regression equation was established by orthogonal experiment.The Ramberg-Osgood constitutive model of tin-bronze connecting rod bushing was obtained.Referred to the constitutive relation of macroscopic incremental,the incremental elastoplastic constitutive relation of spinning parts was deduced based on the Mises yield criterion and kinematic hardening model.The results can be applied to the elastoplastic analysis in finite element numerical simulation.
文摘We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underestimated by 52 % if thermal effects are omitted. Furthermore, an inconsistency arises when energy and temperature are simultaneously optimized by dynamic voltage scaling. Temperature is a limiting factor for future integrated circuits,and the thermal optimization approach can attain a temperature reduction of up to 12℃ with less than 1.8% energy penalty compared with the energy optimization one.
文摘To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.
文摘Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Pro-gram of China(863 Program)(No.2007AA01Z2B4).
文摘A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.
文摘This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.
文摘A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces computation time by 10.7% compared with previous methods. Furthermore,a primary input critical factor model that captures the extent of primary inputs' PSN contribution is formulated. Based on these models,a novel niche genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this novel method can achieve up to 19.0% improvement on PSN estimation with a much higher convergence speed.
基金This project is supported by the 10th Five-year Plan Pre-research Project Foundation of China Weapon Industry Company, China(No.42001080701).
文摘The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.
基金Supported by Special Fund for Argo-scientific Research in the Public Interest,China(Grant No.201203024)National Natural Science Foundation of China(Grant No.51175498)
文摘The ride comfort experimental assessment of crawler off-road vehicle is relatively overlooked, and is expensive and difficult to execute with higher and higher ride comfort performance requirements. To trade off between precise and cost, an experimental method based on the similitude theory is proposed. Under the guidance of the similitude theory, a 1:5 crawler power chassis scale model equipped with a kind of variable stiffness suspension system is used. The power spectrum density(PSD), the root mean square(RMS) of weighed acceleration, peak factor, average absorbed power(AAP) and vibration dose value(VDV) are selected as ride comfort evaluation indexes, and tests results are transformed via similarity indexes to predict the performance of full-scale power chassis. PSD shows that the low-order natural frequency of the vertical natural frequency(z axis) is 1.1 Hz, and the RMS, AAP and VDV values indicate the ride comfort performance of this kind of power chassis is between the "A little uncomfortable" and "Rather uncomfortable". From the results, low-order vertical natural frequency, obtained by PSD, validates that the similarity relationship between two models is satisfied, and 1:5 scale model used in experiment meets the similarity relationship with the full-scale model; consequently, the ride comfort prophase evaluation with the 1:5 scale model is feasible. The attempt of applying the similitude theory to crawler vehicle ride comfort test study decreases the cost and improves the test feasibility with sufficient test precise.
文摘Based on real time price counting of electric power, an optimization model of time sharing power for electrolytic zinc process(EZP) was established by means of an incremental fuzzy neural network(FNN), which is adopted to approximate the relationship of current efficiency, current density and acidity. Penalty function introduced and optimal objective function reconstructed, a single loop simulated annealing algorithm(SAA) by using mutation and extending searching spaces was used to obtain optimal time sharing power scheme. Industrial practical results show that the whole system can greatly decrease the power consumption of EZP and increase the time sharing profits.
基金supported Foundation of National Development and Reform Commission of China (No. 2040)
文摘Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.
基金the Major Program of National Natural Science Foundation of China(51490683).
文摘Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.
基金National Key R&D Program of China"Study on impact assessment of ecological climate and environment on the wind fann and photovoltaic plants"(2018YFB1502800)Science and Technology Project of State Grid Hebei Electric Power Company"Research and application of medium and long-term forecasting technology for regional wind and photovoltaic resources and generation capacity",(5204BB170007)Special Fund Project of Hebei Provincial Government(19214310D).
文摘Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method.