The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inve...The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.展开更多
The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are tw...The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.展开更多
The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control str...The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.展开更多
This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design ...This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.展开更多
Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth le...Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.展开更多
In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response w...In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.展开更多
This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (f...This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.展开更多
Among all the renewable energy sources,the installed capacity of solar power generation is the fastest growing in recent years,so photovoltaic(PV)power generation still has great market potential.Compared with low-pow...Among all the renewable energy sources,the installed capacity of solar power generation is the fastest growing in recent years,so photovoltaic(PV)power generation still has great market potential.Compared with low-power systems,large-scale PV systems are more commercially attractive,because they can reduce the cost of the system per watt.The PV inverters with centralized and string structure have been applied in large-scale PV plant,but it is difficult to further increase the voltage and power levels for a single converter.In addition,the line-frequency isolation transformer requires a large amount of materials and has a large volume and weight.Therefore,it is a current trend for large-scale PV system to increase the voltage and power levels to directly connect to the medium-voltage power grid.Based on this,this paper investigates and compares several topologies of PV inverters without line-frequency transformer,including the MMC structure and the three-phase cascaded H-bridge(CHB)structure,which are able to directly connect to the 35kV medium-voltage power grid,and can not only make the voltage and power levels higher,but also further reduce the cost and volume of the whole system.展开更多
Due to the restriction of light illumination condition, the effective utilization of PV grid-connected systems is very low. In view of this question, this paper presents a unified control strategy based on PV grid-con...Due to the restriction of light illumination condition, the effective utilization of PV grid-connected systems is very low. In view of this question, this paper presents a unified control strategy based on PV grid-connected and active power filter. The distributed small-capacity grid-connected inverter is chose to be the research object. It is preferential to eliminate the deviation between power qualities of the national standards according to the control of decision tables, and adjust the proportion of the compensation currents dynamically. Finally, the simulation results demonstrate the effectiveness of this unified control strategy.展开更多
This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter t...This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.展开更多
In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised Germa...In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised German medium voltage directives issued in 2009, new requirements for PV inverters have been established internationally. At Fraunhofer ISE's Inverter Laboratory, approximately 25 large PV inverters with a nominal power of up to 880 kVA have been characterized in the past three years. In this period, the focus of many inverter manufacturers has begun to shift from traditional European markets towards an international perspective. Therefore, experiences with numerous different grid codes have been gained by our team. This work summarizes the similarities and differences between these grid codes. Additionally, several requirements that have proved to be critical will be examined. Finally, the adequacy of these grid codes to guarantee the safe and reliable operation of electrical grids is discussed.展开更多
This paper focuses on the design of the inverter power stage connected with PV-grid which supports the contrived PV system. The increased number of grid connected photovoltaic (PV) inverters gave rise to problems conc...This paper focuses on the design of the inverter power stage connected with PV-grid which supports the contrived PV system. The increased number of grid connected photovoltaic (PV) inverters gave rise to problems concerning the stability and safety of the utility grid, as well as power quality issues. The proposed systems can overcome these issues and improve standard regulation methods for gird connected PV inverter. The maximum available voltage in the PV string is tracked by the power stage which has been planned and designed in such a way. The tracked voltage is boosted then. The important components to voltage source inverter (VSI) are boost inductor and input capacitor which are calculated. To get a clear sinusoidal output phase voltage of 230 V from a DC capacitance bus projected to deal with 400 V, the important inverter stage parameters have been planned and modeled in Mat lab. Each block stage of the converter is easily understandable by the Simlink of the dual stage DC-AC converter explanation. The control schemes which have been proposed would compromise with the inverter power stage which forms the neat grid system. The existing renewable energy sources in the laboratory are integrated by the proposed control.展开更多
This paper proposes a single-stage inverter system with maximum power point tracking control (MPPT) applicable in low-power photovoltaic (PV) energy conversion systems. The proposed system is successfully implemented ...This paper proposes a single-stage inverter system with maximum power point tracking control (MPPT) applicable in low-power photovoltaic (PV) energy conversion systems. The proposed system is successfully implemented using a single digital signal processor (DSP) TMS320F2808. The proposed single-stage inverter system has the following features: 1) the ability to harvest the maximum PV power using two simple and effective current sampling methods;2) flexible topology based on the positioning of DC link capacitor on the outside of the inverter bridge circuits;3) reduced volume and higher efficiency than the conventional two-stage inverters, and 4) MPPT accuracy of 99.3% with overall efficiency of 90% under the full-load condition.展开更多
This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optima...This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.展开更多
Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-ti...Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-tied photovoltaic(PV)inverters.Large installations and ambitious plans have been recently achieved for PV systems as clean and renewable power generation sources due to their improved environmental impacts and availability everywhere.Power converters represent the main parts for the grid integration of PV systems.However,PV power converters contain several power switches that construct their circuits.The power switches in PV systems are highly subjected to high stresses due to the continuously varying operating conditions.Moreover,the grid-tied systems represent nonlinear systems and the system model parameters are changing continuously.Consequently,the grid-tied PV systems have a nonlinear factor and the fault detection and identification(FDI)methods based on using mathematical models become more complex.The proposed fuzzy logic-based FDI(FL-FDI)method is based on employing the fuzzy logic concept for detecting and identifying the location of various switch faults.The proposed FL-FDI method is designed and extracted from the analysis and comparison of the various measured voltage/current components for the control purposes.Therefore,the proposed FL-FDI method does not require additional components or measurement circuits.Additionally,the proposed method can detect the faulty condition and also identify the location of the faulty switch for replacement and maintenance purposes.The proposed method can detect the faulty condition within only a single fundamental line period without the need for additional sensors and/or performing complex calculations or precise models.The proposed FL-FDI method is tested on the widely used T-type PV inverter system,wherein there are twelve different switches and the FDI process represents a challenging task.The results shows the superior and accurate performance of the proposed FL-FDI method.展开更多
Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture th...Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm.展开更多
Multilevel inverters are well used in grid connected domestic photovoltaic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress...Multilevel inverters are well used in grid connected domestic photovoltaic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. However, this kind of inverter has to be modified to both limit common-mode currents and improve the robustness of the system. This paper presents a new mixed 5-level inverter that meets these challenges. The operating principle of the converter is proposed. Several experimental measurements are described to validate this new concept. The output voltage and current and the THD of the output voltage are particularly discussed.展开更多
文摘The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.
基金Project (No. 50477033) supported by the National Natural Science Foundation of China
文摘The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.
基金National Natural Science Foundation of China(No.51767014)China Railway Corporation of Science and Technology Research and Development Projects(No.2016J010-C)
文摘The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.
文摘This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.
文摘Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.
基金supported by the Shanghai Education Committee Scientific Research Subsidization (Grant No.05AZ30)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060280018)
文摘In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.
文摘This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.
基金This work was supported by National Natural Science Foundation of China(51937003).
文摘Among all the renewable energy sources,the installed capacity of solar power generation is the fastest growing in recent years,so photovoltaic(PV)power generation still has great market potential.Compared with low-power systems,large-scale PV systems are more commercially attractive,because they can reduce the cost of the system per watt.The PV inverters with centralized and string structure have been applied in large-scale PV plant,but it is difficult to further increase the voltage and power levels for a single converter.In addition,the line-frequency isolation transformer requires a large amount of materials and has a large volume and weight.Therefore,it is a current trend for large-scale PV system to increase the voltage and power levels to directly connect to the medium-voltage power grid.Based on this,this paper investigates and compares several topologies of PV inverters without line-frequency transformer,including the MMC structure and the three-phase cascaded H-bridge(CHB)structure,which are able to directly connect to the 35kV medium-voltage power grid,and can not only make the voltage and power levels higher,but also further reduce the cost and volume of the whole system.
文摘Due to the restriction of light illumination condition, the effective utilization of PV grid-connected systems is very low. In view of this question, this paper presents a unified control strategy based on PV grid-connected and active power filter. The distributed small-capacity grid-connected inverter is chose to be the research object. It is preferential to eliminate the deviation between power qualities of the national standards according to the control of decision tables, and adjust the proportion of the compensation currents dynamically. Finally, the simulation results demonstrate the effectiveness of this unified control strategy.
文摘This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.
文摘In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised German medium voltage directives issued in 2009, new requirements for PV inverters have been established internationally. At Fraunhofer ISE's Inverter Laboratory, approximately 25 large PV inverters with a nominal power of up to 880 kVA have been characterized in the past three years. In this period, the focus of many inverter manufacturers has begun to shift from traditional European markets towards an international perspective. Therefore, experiences with numerous different grid codes have been gained by our team. This work summarizes the similarities and differences between these grid codes. Additionally, several requirements that have proved to be critical will be examined. Finally, the adequacy of these grid codes to guarantee the safe and reliable operation of electrical grids is discussed.
文摘This paper focuses on the design of the inverter power stage connected with PV-grid which supports the contrived PV system. The increased number of grid connected photovoltaic (PV) inverters gave rise to problems concerning the stability and safety of the utility grid, as well as power quality issues. The proposed systems can overcome these issues and improve standard regulation methods for gird connected PV inverter. The maximum available voltage in the PV string is tracked by the power stage which has been planned and designed in such a way. The tracked voltage is boosted then. The important components to voltage source inverter (VSI) are boost inductor and input capacitor which are calculated. To get a clear sinusoidal output phase voltage of 230 V from a DC capacitance bus projected to deal with 400 V, the important inverter stage parameters have been planned and modeled in Mat lab. Each block stage of the converter is easily understandable by the Simlink of the dual stage DC-AC converter explanation. The control schemes which have been proposed would compromise with the inverter power stage which forms the neat grid system. The existing renewable energy sources in the laboratory are integrated by the proposed control.
文摘This paper proposes a single-stage inverter system with maximum power point tracking control (MPPT) applicable in low-power photovoltaic (PV) energy conversion systems. The proposed system is successfully implemented using a single digital signal processor (DSP) TMS320F2808. The proposed single-stage inverter system has the following features: 1) the ability to harvest the maximum PV power using two simple and effective current sampling methods;2) flexible topology based on the positioning of DC link capacitor on the outside of the inverter bridge circuits;3) reduced volume and higher efficiency than the conventional two-stage inverters, and 4) MPPT accuracy of 99.3% with overall efficiency of 90% under the full-load condition.
文摘This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.
基金supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No.2020/01/11742.
文摘Fuzzy logic control(FLC)systems have found wide utilization in several industrial applications.This paper proposes a fuzzy logic-based fault detection and identification method for open-circuit switch fault in grid-tied photovoltaic(PV)inverters.Large installations and ambitious plans have been recently achieved for PV systems as clean and renewable power generation sources due to their improved environmental impacts and availability everywhere.Power converters represent the main parts for the grid integration of PV systems.However,PV power converters contain several power switches that construct their circuits.The power switches in PV systems are highly subjected to high stresses due to the continuously varying operating conditions.Moreover,the grid-tied systems represent nonlinear systems and the system model parameters are changing continuously.Consequently,the grid-tied PV systems have a nonlinear factor and the fault detection and identification(FDI)methods based on using mathematical models become more complex.The proposed fuzzy logic-based FDI(FL-FDI)method is based on employing the fuzzy logic concept for detecting and identifying the location of various switch faults.The proposed FL-FDI method is designed and extracted from the analysis and comparison of the various measured voltage/current components for the control purposes.Therefore,the proposed FL-FDI method does not require additional components or measurement circuits.Additionally,the proposed method can detect the faulty condition and also identify the location of the faulty switch for replacement and maintenance purposes.The proposed method can detect the faulty condition within only a single fundamental line period without the need for additional sensors and/or performing complex calculations or precise models.The proposed FL-FDI method is tested on the widely used T-type PV inverter system,wherein there are twelve different switches and the FDI process represents a challenging task.The results shows the superior and accurate performance of the proposed FL-FDI method.
文摘Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm.
文摘Multilevel inverters are well used in grid connected domestic photovoltaic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. However, this kind of inverter has to be modified to both limit common-mode currents and improve the robustness of the system. This paper presents a new mixed 5-level inverter that meets these challenges. The operating principle of the converter is proposed. Several experimental measurements are described to validate this new concept. The output voltage and current and the THD of the output voltage are particularly discussed.