In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Lithium-sulfur batteries(LSBs)are widely regarded as promising next-generation batteries due to their high theoretical specific capacity and low material cost.However,the practical applications of LSBs are limited by ...Lithium-sulfur batteries(LSBs)are widely regarded as promising next-generation batteries due to their high theoretical specific capacity and low material cost.However,the practical applications of LSBs are limited by the shuttle effect of lithium polysulfides(LiPSs),electronic insulation of charge and discharge products,and slow LiPSs conversion reaction kinetics.Accordingly,the introduction of catalysts into LSBs is one of the effective strategy to solve the issues of the sluggished LiPS conversion.Because of their nearly 100%atom utilization and high electrocatalytic activity,single-atom catalysts(SACs)have been widely used as reaction mediators for LSBs’reactions.Excitingly,the SACs with asymmetric coordination structures have exhibited intriguing electronic structures and superior catalytic activities when compared to the traditional M-N_(4)active sites.In this review,we systematically describe the recent advancements in the installation of asymmetrically coordinated single-atom structure as reactions catalysts in LSBs,including asymmetrically nitrogen coordinated SACs,heteroatom coordinated SACs,support effective asymmetrically coordinated SACs,and bimetallic coordinated SACs.Particularly noteworthy is the discussion of the catalytic conversion mechanism of LiPSs spanning asymmetrically coordinated SACs.Finally,a perspective on the future developments of asymmetrically coordinated SACs in LSB applications is provided.展开更多
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any mod...In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.展开更多
This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems duri...This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.展开更多
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated poro...Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.展开更多
The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was ob...The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inve...The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.展开更多
The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the lin...The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.展开更多
Simultaneous anterior and posterior traumatic dislocations of both hips are very rare. Only 33 cases have been previously reported in the English language literature. Although they were all due to high-energy injuries...Simultaneous anterior and posterior traumatic dislocations of both hips are very rare. Only 33 cases have been previously reported in the English language literature. Although they were all due to high-energy injuries, they were hemodynamically stable and had a stable pelvic ring. We report a unique case of asymmetrical hip dislocations with an unstable pelvic ring and hemodynamic instability. A 40-year-old man was injured in a high-energy motor vehicle accident. He was hemodynamically unstable when he presented in the emergency department. Radiolographs showed asymmetrical dislocations of both hips with an unstable pelvic ring. Under general anesthesia, he had closed reduction of the dislocations of both hips, followed by temporary stabilization with an external fixator. Transcatheter arterial embolization was performed to stop active pelvic bleeding. Delayed open reduction and internal fixation was performed 12 d later with anterior and posterior plates. The patient recovered well with an uneventful post-operative course. Asymmetrical bilateral hip dislocations with pelvic ring instability caused by trauma, as presented in this case, is very rare and potentially life threatening. Prompt treatment can give a good outcome.展开更多
Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural e...Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural evolution were studied by means of electron backscattered diffraction(EBSD).EBSD grain mapping,recrystallization pole figure and grain boundary misorientation angle distribution graph were constructed,and the characteristics were assessed by microstructure,grain size,grain boundary misorientation and texture.The results show that ultra fine grains(UFG)are obtained after annealing at 250℃ for 30?40 min.When the annealing is controlled at 250℃for 40 min,the recrystallization is finished,a large number of small grains appear and most grain boundaries consist of low-angle boundaries.The character of texture is rolling texture after the recrystallization treatment,but the strength of the texture is faint.While second recrystallization happens,{110}<1ī2>+{112}<11ī> texture component disappears and turns into{122}<212>cube twin texture component.展开更多
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
Based on NCEP/CFSR 0.5° reanalysis data and the best track data from the Japan Tokyo Typhoon Center,composite and comparative analyses demonstrate the asymmetrical structures of the temperature and humidity in tr...Based on NCEP/CFSR 0.5° reanalysis data and the best track data from the Japan Tokyo Typhoon Center,composite and comparative analyses demonstrate the asymmetrical structures of the temperature and humidity in tropical cyclones over the Western North Pacific and the South China Sea from 1979 to 2010.The results are shown as follows.(1) With intensifying tropical cyclones,the flow field tends to become gradually more axisymmetric;however,the asymmetry of the specific humidity in the outer regions is more obvious.(2) In general,tropical cyclones have a non-uniform,vertical, "double warm-core" structure.The "warm-cores" in the lower level of weak tropical cyclones and in the higher level of strong tropical cyclones are the stronger of the two.(3) The distribution area of a "warm-core" is enhanced with cyclone intensification and tends to become more axisymmetric.At 200 hPa,the "warm-core" of a weak cyclone has a weak anticyclone in the center,whereas that of a strong cyclone has a weak cyclone in the center.(4)The "wet-core" of a tropical cyclone is primarily located in the lower level(700-850 hPa).With the cyclone's intensification,the intensity of the "wet-core" increases and the scope of the 0.8 g kg^(-1) specific humidity anomaly tends to expand to higher levels.(5) With the cyclone's deepening,the pseudo-equivalent potential temperature at different levels in different regions increases.In addition,the largest warming rates at each intensity level in the different regions occur in the core area,followed in turn by the envelope and outer areas.展开更多
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of ...An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of cyclohexanone oxime from cyclohexanone, ammonia and hydrogen peroxide was carried out in a batch plant. Cyclohexane was used as the solvent in the three-phase reaction system. The influences of essential process parameters on ammoximation were investigated. Under the reaction conditions as catalyst content of 2.5% (by mass); H 2 O 2 /yclohexanone molar ratio of 1.10; NH 3 /cyclohexanone molar ratio of 2.20; reaction temperature of 343 K; reaction time of 5 h, high conversion of cyclohexanone and selectivity to oxime (both>99%) were obtained. Thus, the three-phase ammoximation process showed equal catalytic activity as TS-1 but much more convenient and simpler for the separation of catalyst in comparison to the industrial two-phase system with t-butanol used as solvent.展开更多
Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the perfo...Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.展开更多
Constructing heterojunction is an effective strategy to develop high-performance non-preciousmetal-based catalysts for electrochemical water splitting(WS).Herein,we design and prepare an N-doped-carbon-encapsulated Ni...Constructing heterojunction is an effective strategy to develop high-performance non-preciousmetal-based catalysts for electrochemical water splitting(WS).Herein,we design and prepare an N-doped-carbon-encapsulated Ni/MoO_(2) nano-needle with three-phase heterojunction(Ni/MoO_(2)@CN)for accelerating the WS under industrial alkaline condition.Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface,which optimizes the adsorption energy of H-and O-containing intermediates to obtain the best ΔG_(H*) for hydrogen evolution reaction(HER)and decrease the ΔG value of ratedetermining step for oxygen evolution reaction(OER),thus enhancing the HER/OER catalytic activity.Electrochemical results confirm that Ni/MoO_(2)@CN exhibits good activity for HER(ƞ_(-10)=33 mV,ƞ_(-1000)=267 mV)and OER(ƞ_(10)=250 mV,ƞ_(1000)=420 mV).It shows a low potential of 1.86 V at 1000 mA cm^(−2) for WS in 6.0 M KOH solution at 60℃ and can steadily operate for 330 h.This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites,faster mass diffusion,and bubbles release.This work provides a unique idea for designing high efficiency catalytic materials for WS.展开更多
The distribution of precipitation field from the typhoon Haitang(2005) during its landing on Fujian province shows obvious asymmetric feature.Based on the NCEP/NCAR FNL(Final Analysis) data,this study reveals the cont...The distribution of precipitation field from the typhoon Haitang(2005) during its landing on Fujian province shows obvious asymmetric feature.Based on the NCEP/NCAR FNL(Final Analysis) data,this study reveals the contributions of atmospheric factor to the asymmetrical distribution characteristics of precipitation associated with the typhoon,through the analysis of water vapor condition,vertical ascending motion condition,the calculation of the dry Q vector and its decomposition,and adiabatic heating in the air column of 1000hPa-600hPa(lower atmosphere) and500hPa-100hPa(upper atmosphere).The results are as follows:(1) In the lower atmosphere,the humidity on both sides of typhoon path can be equivalent,while it is more wet on the right side than left in the upper atmosphere,which obviously presents asymmetric distribution characteristics.(2) Both range and intensity of the vertical motion on the right side are wider and stronger than counterparts on the left side no matter in the lower or upper atmosphere.(3) In the upper atmosphere,forcing role of atmosphere in vertical upward motion on the right side of typhoon path is the same as that on the left,while it is significantly different in the lower atmosphere,which is significantly broader in scope and stronger in the intensity,along with obvious asymmetric distribution characteristics.In addition,the further analysis of the Q vector decomposition indicates that the forcing effect of mesoscale weather systems on vertical upward motion is stronger than that of large scale weather systems in the lower atmosphere.(4) The adiabatic heating always exists on both lower and upper atmosphere,and the range and intensity of the adiabatic heating forcing showed asymmetric distribution on both lower and upper atmosphere.(5) In a summary,the upper atmosphere humidity conditions,the forcing role of lower atmosphere in vertical upward motion,especially,to mesoscale weather system,and adiabatic heating in the lower atmosphere,all show similar asymmetric distribution characteristics to that of precipitation field from the typhoon Haitang(2005),that is to say,the atmospheric factors as mentioned above are all contributed to genesis of the asymmetric distribution characteristics of precipitation.展开更多
The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are tw...The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.展开更多
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金supported by the National Natural Science Foundation of China(Grant Nos.22108133,51972180)Science,Education and Industry Integration of Basic Research Projects of Qilu University of Technology(Grant No.2022PY062,2023PY034,2023PY022)
文摘Lithium-sulfur batteries(LSBs)are widely regarded as promising next-generation batteries due to their high theoretical specific capacity and low material cost.However,the practical applications of LSBs are limited by the shuttle effect of lithium polysulfides(LiPSs),electronic insulation of charge and discharge products,and slow LiPSs conversion reaction kinetics.Accordingly,the introduction of catalysts into LSBs is one of the effective strategy to solve the issues of the sluggished LiPS conversion.Because of their nearly 100%atom utilization and high electrocatalytic activity,single-atom catalysts(SACs)have been widely used as reaction mediators for LSBs’reactions.Excitingly,the SACs with asymmetric coordination structures have exhibited intriguing electronic structures and superior catalytic activities when compared to the traditional M-N_(4)active sites.In this review,we systematically describe the recent advancements in the installation of asymmetrically coordinated single-atom structure as reactions catalysts in LSBs,including asymmetrically nitrogen coordinated SACs,heteroatom coordinated SACs,support effective asymmetrically coordinated SACs,and bimetallic coordinated SACs.Particularly noteworthy is the discussion of the catalytic conversion mechanism of LiPSs spanning asymmetrically coordinated SACs.Finally,a perspective on the future developments of asymmetrically coordinated SACs in LSB applications is provided.
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
文摘In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.
基金the authority of the National Natural Science Foundation of China(Grant Nos.52178168 and 51378427)for financing this research work and several ongoing research projects related to structural impact performance.
文摘This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.
文摘Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.
基金Project (50804018) supported by the National Natural Science Foundation of ChinaProject (ZDS2010015C) supported by Key Lab of Advanced Materials in Rare and Precious and Non-ferrous Metals, Ministry of Education, KMUST, ChinaProject (2010DH025) supported by Yunnan Province Construction Plans of Scientific and Technological Conditions, China
文摘The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
文摘The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.
基金Supported by the National Key Research and Development Program of China(Grant No.2017YFD0700800)National Natural Science Foundation of China(Grant Nos.51775512,51975536)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20E050003)Basic Public Welfare Technology Application Research Projects of Zhejiang Province(Grant Nos.LGN19E050002,LGN20E050006).
文摘The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.
基金Zhejiang Scientific and Technological Plan of Traditional Chinese Medicine,No.2018ZB033Zhejiang Medical and Health Science and Technology Project,No.2018234792
文摘Simultaneous anterior and posterior traumatic dislocations of both hips are very rare. Only 33 cases have been previously reported in the English language literature. Although they were all due to high-energy injuries, they were hemodynamically stable and had a stable pelvic ring. We report a unique case of asymmetrical hip dislocations with an unstable pelvic ring and hemodynamic instability. A 40-year-old man was injured in a high-energy motor vehicle accident. He was hemodynamically unstable when he presented in the emergency department. Radiolographs showed asymmetrical dislocations of both hips with an unstable pelvic ring. Under general anesthesia, he had closed reduction of the dislocations of both hips, followed by temporary stabilization with an external fixator. Transcatheter arterial embolization was performed to stop active pelvic bleeding. Delayed open reduction and internal fixation was performed 12 d later with anterior and posterior plates. The patient recovered well with an uneventful post-operative course. Asymmetrical bilateral hip dislocations with pelvic ring instability caused by trauma, as presented in this case, is very rare and potentially life threatening. Prompt treatment can give a good outcome.
基金Projects(50804018,50564005)supported by the National Natural Science Foundation of ChinaProject(2003E0003Z)supported by the Key Science Foundation of Yunnan Province,China+1 种基金Project(08Y0055)supported by Scientific Research Fund of Yunnan Provincial Education Department,ChinaProject(2008-055)supported by Talents Cultivation Foundation of Kunming University of Science and Technology,China
文摘Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural evolution were studied by means of electron backscattered diffraction(EBSD).EBSD grain mapping,recrystallization pole figure and grain boundary misorientation angle distribution graph were constructed,and the characteristics were assessed by microstructure,grain size,grain boundary misorientation and texture.The results show that ultra fine grains(UFG)are obtained after annealing at 250℃ for 30?40 min.When the annealing is controlled at 250℃for 40 min,the recrystallization is finished,a large number of small grains appear and most grain boundaries consist of low-angle boundaries.The character of texture is rolling texture after the recrystallization treatment,but the strength of the texture is faint.While second recrystallization happens,{110}<1ī2>+{112}<11ī> texture component disappears and turns into{122}<212>cube twin texture component.
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
基金Major State Basic Research Program of China(2013CB430305)National Natural Science Foundation of China(41475060,41275067,41305049)Public Benefit Research Foundation of China(GYHY201406010)
文摘Based on NCEP/CFSR 0.5° reanalysis data and the best track data from the Japan Tokyo Typhoon Center,composite and comparative analyses demonstrate the asymmetrical structures of the temperature and humidity in tropical cyclones over the Western North Pacific and the South China Sea from 1979 to 2010.The results are shown as follows.(1) With intensifying tropical cyclones,the flow field tends to become gradually more axisymmetric;however,the asymmetry of the specific humidity in the outer regions is more obvious.(2) In general,tropical cyclones have a non-uniform,vertical, "double warm-core" structure.The "warm-cores" in the lower level of weak tropical cyclones and in the higher level of strong tropical cyclones are the stronger of the two.(3) The distribution area of a "warm-core" is enhanced with cyclone intensification and tends to become more axisymmetric.At 200 hPa,the "warm-core" of a weak cyclone has a weak anticyclone in the center,whereas that of a strong cyclone has a weak cyclone in the center.(4)The "wet-core" of a tropical cyclone is primarily located in the lower level(700-850 hPa).With the cyclone's intensification,the intensity of the "wet-core" increases and the scope of the 0.8 g kg^(-1) specific humidity anomaly tends to expand to higher levels.(5) With the cyclone's deepening,the pseudo-equivalent potential temperature at different levels in different regions increases.In addition,the largest warming rates at each intensity level in the different regions occur in the core area,followed in turn by the envelope and outer areas.
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
基金Supported by the National Natural Science Foundation of China and Sinopec (20736009)
文摘An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of cyclohexanone oxime from cyclohexanone, ammonia and hydrogen peroxide was carried out in a batch plant. Cyclohexane was used as the solvent in the three-phase reaction system. The influences of essential process parameters on ammoximation were investigated. Under the reaction conditions as catalyst content of 2.5% (by mass); H 2 O 2 /yclohexanone molar ratio of 1.10; NH 3 /cyclohexanone molar ratio of 2.20; reaction temperature of 343 K; reaction time of 5 h, high conversion of cyclohexanone and selectivity to oxime (both>99%) were obtained. Thus, the three-phase ammoximation process showed equal catalytic activity as TS-1 but much more convenient and simpler for the separation of catalyst in comparison to the industrial two-phase system with t-butanol used as solvent.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51374101 and 51474158)the National Basic Research Program of China(973 Program,Grant No.2014CB239203)the Scientific Research Project of Education Department of Hunan Province(Grant No.14B047)
文摘Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Hundred Talents Program of Guangxi Universities,the Excellent Scholars and Innovation Team of Guangxi Universities+1 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2021011)the High-performance Computing Platform of Guangxi University.
文摘Constructing heterojunction is an effective strategy to develop high-performance non-preciousmetal-based catalysts for electrochemical water splitting(WS).Herein,we design and prepare an N-doped-carbon-encapsulated Ni/MoO_(2) nano-needle with three-phase heterojunction(Ni/MoO_(2)@CN)for accelerating the WS under industrial alkaline condition.Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface,which optimizes the adsorption energy of H-and O-containing intermediates to obtain the best ΔG_(H*) for hydrogen evolution reaction(HER)and decrease the ΔG value of ratedetermining step for oxygen evolution reaction(OER),thus enhancing the HER/OER catalytic activity.Electrochemical results confirm that Ni/MoO_(2)@CN exhibits good activity for HER(ƞ_(-10)=33 mV,ƞ_(-1000)=267 mV)and OER(ƞ_(10)=250 mV,ƞ_(1000)=420 mV).It shows a low potential of 1.86 V at 1000 mA cm^(−2) for WS in 6.0 M KOH solution at 60℃ and can steadily operate for 330 h.This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites,faster mass diffusion,and bubbles release.This work provides a unique idea for designing high efficiency catalytic materials for WS.
基金National Natural Science Foundation of China(40875025,41175050,41275021,41475039,41475041,41575048)Public Sector(Meteorology)Research of China(GYHY201306012,GYHY201506007)
文摘The distribution of precipitation field from the typhoon Haitang(2005) during its landing on Fujian province shows obvious asymmetric feature.Based on the NCEP/NCAR FNL(Final Analysis) data,this study reveals the contributions of atmospheric factor to the asymmetrical distribution characteristics of precipitation associated with the typhoon,through the analysis of water vapor condition,vertical ascending motion condition,the calculation of the dry Q vector and its decomposition,and adiabatic heating in the air column of 1000hPa-600hPa(lower atmosphere) and500hPa-100hPa(upper atmosphere).The results are as follows:(1) In the lower atmosphere,the humidity on both sides of typhoon path can be equivalent,while it is more wet on the right side than left in the upper atmosphere,which obviously presents asymmetric distribution characteristics.(2) Both range and intensity of the vertical motion on the right side are wider and stronger than counterparts on the left side no matter in the lower or upper atmosphere.(3) In the upper atmosphere,forcing role of atmosphere in vertical upward motion on the right side of typhoon path is the same as that on the left,while it is significantly different in the lower atmosphere,which is significantly broader in scope and stronger in the intensity,along with obvious asymmetric distribution characteristics.In addition,the further analysis of the Q vector decomposition indicates that the forcing effect of mesoscale weather systems on vertical upward motion is stronger than that of large scale weather systems in the lower atmosphere.(4) The adiabatic heating always exists on both lower and upper atmosphere,and the range and intensity of the adiabatic heating forcing showed asymmetric distribution on both lower and upper atmosphere.(5) In a summary,the upper atmosphere humidity conditions,the forcing role of lower atmosphere in vertical upward motion,especially,to mesoscale weather system,and adiabatic heating in the lower atmosphere,all show similar asymmetric distribution characteristics to that of precipitation field from the typhoon Haitang(2005),that is to say,the atmospheric factors as mentioned above are all contributed to genesis of the asymmetric distribution characteristics of precipitation.
基金Project (No. 50477033) supported by the National Natural Science Foundation of China
文摘The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.