Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala...Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
The possibility of underground imbalance between heat emission and absorption has a negative impact on the performance of ground-source heat pump systems (GSHPs). Numerical and experimental researches were made in a...The possibility of underground imbalance between heat emission and absorption has a negative impact on the performance of ground-source heat pump systems (GSHPs). Numerical and experimental researches were made in a residential building, which is supplied with a GSHP system and a ceiling radiation system combined with a replacement fresh air system. EnergyPlus simulations were used to estimate heating and cooling loads, and to assess the heat generated from the water pump, the fan and the heat pump unit. Then, Fluent simulations were used to compare three different control strategies of handling the underground heat exchange. These simulations were strongly based on an experimentally verified model. It is obtained that a ratio between cooling and heating loads is 5.08 : 1 in a case study in Nanjing. Moreover, the control strategy based on the starting time is more efficient and reliable than the temperature and temperature difference strategies to control the underground heat exchange.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
Purpose: Although proximal stability of the trunk is a prerequisite for balance and gait, to determine the role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke is yet unknown...Purpose: Although proximal stability of the trunk is a prerequisite for balance and gait, to determine the role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke is yet unknown. Method: Fifteen sub-jects (post-stroke duration (3.53 ± 2.98) years) who had the ability to walk 10 meters independently with or without a walking aid;scoring ≤ 21 on Trunk Impairment Scale (TIS), participated in a selective trunk muscle exercise regime, consisting of 45 minutes training per day, four days a week, and for four weeks duration in an outpatient stroke reha-bilitation centre. Results: The overall effect size index for trunk rehabilitation was 1.07. This study showed large effect size index for Trunk Impairment Scale (1.75), Berg Balance Scale (1.65) than for gait variables (0.65). After trunk rehabilitation, there was a significant improvement for gait speed (p= 0.015), cadence (p= 0.001) and gait symmetry (p=0.019) in patients with chronic stroke. In addition, all the spatial gait parameters had a significant change post-intervention. There was no significant change in temporal gait parameters with the exception of affected single limb support time. The level of significance was set at p < 0.05. Conclusion: The exercises consisted of selective trunk movement of the upper and the lower part of trunk had shown larger effect size index for trunk control and balance than for gait in patients with chronic stroke. Future randomized controlled studies incorporating large sample size would provide insight into the effectiveness and clinical relevance of this intervention.展开更多
Software Defined Networking(SDN) provides flexible network management by decoupling control plane and data plane. However, such separation introduces the issues regarding the reliability of the control plane and contr...Software Defined Networking(SDN) provides flexible network management by decoupling control plane and data plane. However, such separation introduces the issues regarding the reliability of the control plane and controller load imbalance in the distributed SDN network, which will cause the low network stability and the poor controller performance. This paper proposes Reliable and Load balance-aware Multi-controller Deployment(RLMD) strategy to address the above problems. Firstly, we establish a multiple-controller network model and define the relevant parameters for RLMD. Then, we design the corresponding algorithms to implement this strategy. By weighing node efficiency and path quality, Controller Placement Selection(CPS) algorithm is introduced to explore the reliable deployments of the controllers. On this basis, we design Multiple Domain Partition(MDP) algorithm to allocate switches for controllers according to node attractability and controller load balancing rate, which could realize the reasonable domain planning. Finally, the simulations show that, compared with the typical strategies, RLMD has the better performance in improving the reliability of the control plane and balancing the distribution of the controller loads.展开更多
Background:Balance impairment is one of the strongest risk factors for falls.Proprioception,cutaneous sensitivity,and muscle strength are 3 important contributors to balance control in older adults.The relationship th...Background:Balance impairment is one of the strongest risk factors for falls.Proprioception,cutaneous sensitivity,and muscle strength are 3 important contributors to balance control in older adults.The relationship that dynamic and static balance control has to proprioception,cutaneous sensitivity,and muscle strength is still unclear.This study was performed to investigate the relationship these contributors have to dynamic and static balance control.Methods:A total of 164 older adults(female=89,left dominant=15,age:73.5±7.8 years,height:161.6±7.1 cm,weight:63.7±8.9 kg,mean±SD)participated in this study.It tested the proprioception of their knee flexion/extension and ankle dorsi/plantarflexion,along with cutaneous sensitivity at the great toe,first and fifth metatarsals,arch,and heel,and the muscle strength of their ankle dorsi/plantarflexion and hip abduction.The Berg Balance Scale(BBS)and the root mean square(RMS)of the center of pressure(CoP)were collected as indications of dynamic and static balance control.A partial correlation was used to determine the relationship between the measured outcomes variables(BBS and CoPRMS)and the proprioception,cutaneous sensitivity,and muscle strength variables.Results:Proprioception of ankle plantarflexion(r=-0.306,p=0.002)and dorsiflexion(r=-0.217,p=0.030),and muscle strength of ankle plantarflexion(r=0.275,p=0.004),dorsiflexion(r=0.369,p<0.001),and hip abduction(r=0.342,p<0.001)were weakly to moderately correlated with BBS.Proprioception of ankle dorsiflexion(r=0.218,p=0.020)and cutaneous sensitivity at the great toe(r=0.231,p=0.041)and arch(r=0.285,p=0.002)were weakly correlated with CoP-RMS in the anteroposterior direction.Proprioception of ankle dorsiflexion(r=0.220,p=0.035),knee flexion(r=0.308,p=0.001)and extension(r=0.193,p=0.040),and cutaneous sensitivity at the arch(r=0.206,p=0.028)were weakly to moderately correlated with CoP-RMS in the mediolateral direction.Conclusion:There is a weak-to-moderate relationship between proprioception and dynamic and static balance control,a weak relationship between cutaneous sensitivity and static balance control,and a weak-to-moderate relationship between muscle strength and dynamic balance control.展开更多
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortali...It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation-the transient period between the quiet standing posture and steady state walking-is a functional task that is classically used in the literature to investigate how the central nervous system(CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a prerequisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on:(1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and(2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward:(1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and(2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.展开更多
The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control str...The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.展开更多
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur...In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.展开更多
The internal balance technique is effective for the model reduction in flexible structures, especially the ones with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinat...The internal balance technique is effective for the model reduction in flexible structures, especially the ones with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research on this topic has been mostly theoretical so far, and little has been done in experiments or engineering applications. This paper studies the internal balance method theoretically as well as experimentally and designs an active controller based on the reduction model. The research works on a digital signal processor (DSP) TMS320F2812- based experiment system with a flexible beam and proposes an approximate approach to access the internal balance modal coordinates. The simulation and test results have shown that the proposed approach is feasible and effective, and the designed controller is successful in restraining the beam vibration.展开更多
AIM To investigate the impact of extrinsic visual feedback and additional cognitive/physical demands on single-limb balance in individuals with ankle instability.METHODS Sixteen subjects with ankle instability partici...AIM To investigate the impact of extrinsic visual feedback and additional cognitive/physical demands on single-limb balance in individuals with ankle instability.METHODS Sixteen subjects with ankle instability participated in the study. Ankle instability was identified using the Cumberland Ankle Instability Tool(CAIT). The subject's unstable ankle was examined using the Athletic Single Leg Stability Test of the Biodex Balance System with 4 different protocols:(1) default setting with extrinsic visual feedback from the monitor;(2) no extrinsic visual feedback;(3) no extrinsic visual feedback with cognitive demands; and(4) no extrinsic visual feedback with physical demands. For the protocol with added cognitive demands,subjects were asked to continue subtracting 7 from a given number while performing the same test without extrinsic visual feedback. For the protocol with added physical demands,subjects were asked to pass and catch a basketball to and from the examiner while performing the same modified test. RESULTS The subject's single-limb postural control varied significantly among different testing protocols(F = 103; P = 0.000). Subjects' postural control was the worst with added physical demands and the best with the default condition with extrinsic visual feedback. Pairwisecomparison shows subjects performed significantly worse in all modified protocols(P < 0.01 in all comparisons) compared to the default protocol. Results from all 4 protocols are significantly different from each other(P < 0.01) except for the comparison between the "no extrinsic visual feedback" and "no extrinsic visual feedback with cognitive demands" protocols. Comparing conditions without extrinsic visual feedback,adding a cognitive demand did not significantly compromise single-limb balance control but adding a physical demand did. Scores from the default protocol are significantly correlated with the results from all 3 modified protocols: No extrinsic visual feedback(r = 0.782; P = 0.000); no extrinsic visual feedback with cognitive demands(r = 0.569; P = 0.022); no extrinsic visual feedback with physical demands(r = 0.683; P = 0.004). However,the CAIT score is not significantly correlated with the single-limb balance control from any of the 4 protocols: Default with extrinsic visual feedback(r =-0.210; P = 0.434); no extrinsic visual feedback(r =-0.450; P = 0.081); no extrinsic visual feedback with cognitive demands(r =-0.406; P = 0.118); no extrinsic visual feedback with physical demands(r =-0.351; P = 0.182).CONCLUSION Single-limb balance control is worse without extrinsic visual feedback and/or with cognitive/physical demands. The balance test may not be a valid tool to examine ankle instability.展开更多
A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method...A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method. The called "step strategy" can be modeled by means of the reaction null space method that introduced earlier to tackle dynamic interaction problems of free-floating robots, or moving base robots in general. 6-DOF biped robot model simulations are used to confirm the validity.展开更多
Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
The aim of this work is to comparatively study two types of control of a three-phase shunt active filter (TSAF) in order to realize a system of depollution of electrical networks so as to improve the quality of electr...The aim of this work is to comparatively study two types of control of a three-phase shunt active filter (TSAF) in order to realize a system of depollution of electrical networks so as to improve the quality of electrical energy. We used two TSA control models which differ in the method of disturbed currents detection, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives more promising results than the linear control method. When connecting a non-linear load (televisions, lamps, variable speed drives, etc.) directly to the public distribution network, the non-linear nature of the load causes the source current to be deformed due to the presence of harmonic currents and voltages. These harmonics thus generate a high reactive power, and therefore considerable electrical losses in the network. One of the solutions to reduce losses on the electricity grid is to incorporate an electronic circuit called a filter into the electricity grid. This work carried out a comparative study of two types of control of a three-phase shunt active filter (TSAF) in order to carry out a system for cleaning up electricity networks in order to improve the quality of electrical energy. We used two TSA control models that differ in the method of detecting disturbed currents, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives better results than the linear control method.展开更多
One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing...One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.展开更多
Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
文摘Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
文摘The possibility of underground imbalance between heat emission and absorption has a negative impact on the performance of ground-source heat pump systems (GSHPs). Numerical and experimental researches were made in a residential building, which is supplied with a GSHP system and a ceiling radiation system combined with a replacement fresh air system. EnergyPlus simulations were used to estimate heating and cooling loads, and to assess the heat generated from the water pump, the fan and the heat pump unit. Then, Fluent simulations were used to compare three different control strategies of handling the underground heat exchange. These simulations were strongly based on an experimentally verified model. It is obtained that a ratio between cooling and heating loads is 5.08 : 1 in a case study in Nanjing. Moreover, the control strategy based on the starting time is more efficient and reliable than the temperature and temperature difference strategies to control the underground heat exchange.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
文摘Purpose: Although proximal stability of the trunk is a prerequisite for balance and gait, to determine the role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke is yet unknown. Method: Fifteen sub-jects (post-stroke duration (3.53 ± 2.98) years) who had the ability to walk 10 meters independently with or without a walking aid;scoring ≤ 21 on Trunk Impairment Scale (TIS), participated in a selective trunk muscle exercise regime, consisting of 45 minutes training per day, four days a week, and for four weeks duration in an outpatient stroke reha-bilitation centre. Results: The overall effect size index for trunk rehabilitation was 1.07. This study showed large effect size index for Trunk Impairment Scale (1.75), Berg Balance Scale (1.65) than for gait variables (0.65). After trunk rehabilitation, there was a significant improvement for gait speed (p= 0.015), cadence (p= 0.001) and gait symmetry (p=0.019) in patients with chronic stroke. In addition, all the spatial gait parameters had a significant change post-intervention. There was no significant change in temporal gait parameters with the exception of affected single limb support time. The level of significance was set at p < 0.05. Conclusion: The exercises consisted of selective trunk movement of the upper and the lower part of trunk had shown larger effect size index for trunk control and balance than for gait in patients with chronic stroke. Future randomized controlled studies incorporating large sample size would provide insight into the effectiveness and clinical relevance of this intervention.
基金supported in part by the Project of National Network Cyberspace Security (Grant No.2017YFB0803204)the National High-Tech Research and Development Program of China (863 Program) (Grant No. 2015AA016102)+1 种基金Foundation for Innovative Research Group of the National Natural Science Foundation of China (Grant No.61521003)Foundation for the National Natural Science Foundation of China (Grant No. 61502530)
文摘Software Defined Networking(SDN) provides flexible network management by decoupling control plane and data plane. However, such separation introduces the issues regarding the reliability of the control plane and controller load imbalance in the distributed SDN network, which will cause the low network stability and the poor controller performance. This paper proposes Reliable and Load balance-aware Multi-controller Deployment(RLMD) strategy to address the above problems. Firstly, we establish a multiple-controller network model and define the relevant parameters for RLMD. Then, we design the corresponding algorithms to implement this strategy. By weighing node efficiency and path quality, Controller Placement Selection(CPS) algorithm is introduced to explore the reliable deployments of the controllers. On this basis, we design Multiple Domain Partition(MDP) algorithm to allocate switches for controllers according to node attractability and controller load balancing rate, which could realize the reasonable domain planning. Finally, the simulations show that, compared with the typical strategies, RLMD has the better performance in improving the reliability of the control plane and balancing the distribution of the controller loads.
基金funded by Shandong Province Youth Innovative Talent Induction Program(grant number 2019-183)the National Key R&D Program of China(2018YFC2000600).
文摘Background:Balance impairment is one of the strongest risk factors for falls.Proprioception,cutaneous sensitivity,and muscle strength are 3 important contributors to balance control in older adults.The relationship that dynamic and static balance control has to proprioception,cutaneous sensitivity,and muscle strength is still unclear.This study was performed to investigate the relationship these contributors have to dynamic and static balance control.Methods:A total of 164 older adults(female=89,left dominant=15,age:73.5±7.8 years,height:161.6±7.1 cm,weight:63.7±8.9 kg,mean±SD)participated in this study.It tested the proprioception of their knee flexion/extension and ankle dorsi/plantarflexion,along with cutaneous sensitivity at the great toe,first and fifth metatarsals,arch,and heel,and the muscle strength of their ankle dorsi/plantarflexion and hip abduction.The Berg Balance Scale(BBS)and the root mean square(RMS)of the center of pressure(CoP)were collected as indications of dynamic and static balance control.A partial correlation was used to determine the relationship between the measured outcomes variables(BBS and CoPRMS)and the proprioception,cutaneous sensitivity,and muscle strength variables.Results:Proprioception of ankle plantarflexion(r=-0.306,p=0.002)and dorsiflexion(r=-0.217,p=0.030),and muscle strength of ankle plantarflexion(r=0.275,p=0.004),dorsiflexion(r=0.369,p<0.001),and hip abduction(r=0.342,p<0.001)were weakly to moderately correlated with BBS.Proprioception of ankle dorsiflexion(r=0.218,p=0.020)and cutaneous sensitivity at the great toe(r=0.231,p=0.041)and arch(r=0.285,p=0.002)were weakly correlated with CoP-RMS in the anteroposterior direction.Proprioception of ankle dorsiflexion(r=0.220,p=0.035),knee flexion(r=0.308,p=0.001)and extension(r=0.193,p=0.040),and cutaneous sensitivity at the arch(r=0.206,p=0.028)were weakly to moderately correlated with CoP-RMS in the mediolateral direction.Conclusion:There is a weak-to-moderate relationship between proprioception and dynamic and static balance control,a weak relationship between cutaneous sensitivity and static balance control,and a weak-to-moderate relationship between muscle strength and dynamic balance control.
文摘It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation-the transient period between the quiet standing posture and steady state walking-is a functional task that is classically used in the literature to investigate how the central nervous system(CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a prerequisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on:(1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and(2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward:(1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and(2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
基金National Natural Science Foundation of China(No.51767014)China Railway Corporation of Science and Technology Research and Development Projects(No.2016J010-C)
文摘The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.
文摘In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.
基金Project supported by the National Natural Science Foundation of China(Nos.11072146 and 11002087)
文摘The internal balance technique is effective for the model reduction in flexible structures, especially the ones with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research on this topic has been mostly theoretical so far, and little has been done in experiments or engineering applications. This paper studies the internal balance method theoretically as well as experimentally and designs an active controller based on the reduction model. The research works on a digital signal processor (DSP) TMS320F2812- based experiment system with a flexible beam and proposes an approximate approach to access the internal balance modal coordinates. The simulation and test results have shown that the proposed approach is feasible and effective, and the designed controller is successful in restraining the beam vibration.
文摘AIM To investigate the impact of extrinsic visual feedback and additional cognitive/physical demands on single-limb balance in individuals with ankle instability.METHODS Sixteen subjects with ankle instability participated in the study. Ankle instability was identified using the Cumberland Ankle Instability Tool(CAIT). The subject's unstable ankle was examined using the Athletic Single Leg Stability Test of the Biodex Balance System with 4 different protocols:(1) default setting with extrinsic visual feedback from the monitor;(2) no extrinsic visual feedback;(3) no extrinsic visual feedback with cognitive demands; and(4) no extrinsic visual feedback with physical demands. For the protocol with added cognitive demands,subjects were asked to continue subtracting 7 from a given number while performing the same test without extrinsic visual feedback. For the protocol with added physical demands,subjects were asked to pass and catch a basketball to and from the examiner while performing the same modified test. RESULTS The subject's single-limb postural control varied significantly among different testing protocols(F = 103; P = 0.000). Subjects' postural control was the worst with added physical demands and the best with the default condition with extrinsic visual feedback. Pairwisecomparison shows subjects performed significantly worse in all modified protocols(P < 0.01 in all comparisons) compared to the default protocol. Results from all 4 protocols are significantly different from each other(P < 0.01) except for the comparison between the "no extrinsic visual feedback" and "no extrinsic visual feedback with cognitive demands" protocols. Comparing conditions without extrinsic visual feedback,adding a cognitive demand did not significantly compromise single-limb balance control but adding a physical demand did. Scores from the default protocol are significantly correlated with the results from all 3 modified protocols: No extrinsic visual feedback(r = 0.782; P = 0.000); no extrinsic visual feedback with cognitive demands(r = 0.569; P = 0.022); no extrinsic visual feedback with physical demands(r = 0.683; P = 0.004). However,the CAIT score is not significantly correlated with the single-limb balance control from any of the 4 protocols: Default with extrinsic visual feedback(r =-0.210; P = 0.434); no extrinsic visual feedback(r =-0.450; P = 0.081); no extrinsic visual feedback with cognitive demands(r =-0.406; P = 0.118); no extrinsic visual feedback with physical demands(r =-0.351; P = 0.182).CONCLUSION Single-limb balance control is worse without extrinsic visual feedback and/or with cognitive/physical demands. The balance test may not be a valid tool to examine ankle instability.
基金supported by the National Natural Science Foundation of China (No.50675016)the Science and Technology Innovation Fund for the Doctor (No.48030)
文摘A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method. The called "step strategy" can be modeled by means of the reaction null space method that introduced earlier to tackle dynamic interaction problems of free-floating robots, or moving base robots in general. 6-DOF biped robot model simulations are used to confirm the validity.
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
文摘The aim of this work is to comparatively study two types of control of a three-phase shunt active filter (TSAF) in order to realize a system of depollution of electrical networks so as to improve the quality of electrical energy. We used two TSA control models which differ in the method of disturbed currents detection, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives more promising results than the linear control method. When connecting a non-linear load (televisions, lamps, variable speed drives, etc.) directly to the public distribution network, the non-linear nature of the load causes the source current to be deformed due to the presence of harmonic currents and voltages. These harmonics thus generate a high reactive power, and therefore considerable electrical losses in the network. One of the solutions to reduce losses on the electricity grid is to incorporate an electronic circuit called a filter into the electricity grid. This work carried out a comparative study of two types of control of a three-phase shunt active filter (TSAF) in order to carry out a system for cleaning up electricity networks in order to improve the quality of electrical energy. We used two TSA control models that differ in the method of detecting disturbed currents, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives better results than the linear control method.
文摘One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.