To solve the input current harmonic pollution of the high power rectifier system,18-pulse rectifier based on a kind of active harmonic suppression technique at dc side is proposed in this paper.The pulse rectifier emp...To solve the input current harmonic pollution of the high power rectifier system,18-pulse rectifier based on a kind of active harmonic suppression technique at dc side is proposed in this paper.The pulse rectifier employs three-phase diode bridges,each of them followed by a boost converter.Unlike the conventional three-phase unity-power-factor diode rectifier,the ideal sinusoidal main currents of circuit topology are obtained by control its output current or input currents of three boost converters for approximately triangular modulation.The theoretical of modulation strategy and characteristics of input and output currents about the proposed rectifier are analyzed in detail.Simulation results by Matlab/Simulink demonstrate that the proposed rectifier draws nearly sinusoidal current and power quality index is improved.The correctness of the theoretical analysis is validated.展开更多
In this paper,a grid voltage sensorless model predictive control is proposed and verified by simulation and experimental tests for a PWM rectifier.The presented method is simple and cost effective due to no need of mo...In this paper,a grid voltage sensorless model predictive control is proposed and verified by simulation and experimental tests for a PWM rectifier.The presented method is simple and cost effective due to no need of modulator and voltage sensors.The developed sliding mode voltage observer(SMVO)can theoretically track the grid voltage accurately without phase lag and magnitude error.Based on the proposed SMVO,the finite control set-model predictive control(FCS-MPC)is incorporated for power regulation.The active power and reactive power are calculated and predicted using the measured current and the estimated grid voltage from the SMVO.With the predicated power for one-step delay compensation,the best voltage vector minimizing the tracking error is selected by FCS-MPC.The whole algorithm is implemented in stationary frame without using Park's transformation.Both the simulation and experimental results validate the effectiveness of the proposed method.展开更多
电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Mod...电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Model predictive direct power control,MPDPC)对传统控制策略进行改进。首先建立了三相PWM整流器的数学模型,给出了每个采样周期内的功率变化率,并推导出相邻采样周期之间的功率关系,然后给出基于单矢量的模型预测直接功率控制策略,提出了基于双矢量的模型预测直接功率控制策略,并优选出两个电流矢量,计算在一个采样周期内的作用时间,并对其进行修正。最后,在Matlab/Simulink仿真软件验证了所提控制策略的可行性和有效性。展开更多
三相电流源型PWM整流器(Current Source Rectifier,CSR)因其可实现网侧单位因数和正弦波电流控制,具备电能双向传输能力,广泛应用于应急电源系统(Emergency Power Supply,EPS)的电能转换系统。针对CSR的LC滤波电路容易产生谐振,以及带...三相电流源型PWM整流器(Current Source Rectifier,CSR)因其可实现网侧单位因数和正弦波电流控制,具备电能双向传输能力,广泛应用于应急电源系统(Emergency Power Supply,EPS)的电能转换系统。针对CSR的LC滤波电路容易产生谐振,以及带容性负载输出时,数学模型阶数增加导致控制器参数设计复杂等问题,提出了一种组合型有源阻尼解耦控制策略。首先,在d-q坐标下建立带容性负载的CSR数学模型;其次,CSR交流侧采用电容电压反馈(Capacitance Voltage Feedback,CVF)和电感电流反馈(Inductance Current Feedback,ICF)的组合型有源阻尼控制,以抑制交流侧LC滤波器谐振尖峰并提高系统阻尼比,直流侧采用状态反馈控制以稳定直流母线电压;然后,调节d轴开关分量实现系统网侧电压电流同相位运行;最后,通过MATALB/Simulink仿真及实验,验证了该控制策略的可行性。展开更多
We propose a new power conversion system for a permanent magnet synchronous generator(PMSG) based grid-connected wind energy conversion system(WECS) operating with fully-controlled back-to-back current-source converte...We propose a new power conversion system for a permanent magnet synchronous generator(PMSG) based grid-connected wind energy conversion system(WECS) operating with fully-controlled back-to-back current-source converters. On the generator side, two independent current-source rectifiers(CSRs) with space-vector pulse width modulation(SVPWM) are employed to regulate and stabilize DC-link currents. Between DC-link and the electrical grid, a direct-type three-phase five-level current-source inverter(CSI) is inserted as a buffer to regulate real and reactive power fed to the grid and thus adjusts the grid side power-factor. We also present a current-based maximum power point tracking(MPPT) scheme, which helps the generator extract the maximum power through closed-loop regulation of the generator speed. By applying the multilevel modulation and control strategies to the grid-side five-level CSI, a multilevel output current waveform with less distortion is produced, and the bulk requirement of the output capacitor filter to eliminate the harmonic current is reduced. All the proposed concepts are verified by simulation models built in a PSIM environment.展开更多
基金Natural Science Foundation of Gansu Province Education Department(No.2017A-020)National Natural Science Foundation of China(No.51767013)Science and Technology Research and Development Plan of China Railway Corporation(No.2017J012-A)
文摘To solve the input current harmonic pollution of the high power rectifier system,18-pulse rectifier based on a kind of active harmonic suppression technique at dc side is proposed in this paper.The pulse rectifier employs three-phase diode bridges,each of them followed by a boost converter.Unlike the conventional three-phase unity-power-factor diode rectifier,the ideal sinusoidal main currents of circuit topology are obtained by control its output current or input currents of three boost converters for approximately triangular modulation.The theoretical of modulation strategy and characteristics of input and output currents about the proposed rectifier are analyzed in detail.Simulation results by Matlab/Simulink demonstrate that the proposed rectifier draws nearly sinusoidal current and power quality index is improved.The correctness of the theoretical analysis is validated.
文摘In this paper,a grid voltage sensorless model predictive control is proposed and verified by simulation and experimental tests for a PWM rectifier.The presented method is simple and cost effective due to no need of modulator and voltage sensors.The developed sliding mode voltage observer(SMVO)can theoretically track the grid voltage accurately without phase lag and magnitude error.Based on the proposed SMVO,the finite control set-model predictive control(FCS-MPC)is incorporated for power regulation.The active power and reactive power are calculated and predicted using the measured current and the estimated grid voltage from the SMVO.With the predicated power for one-step delay compensation,the best voltage vector minimizing the tracking error is selected by FCS-MPC.The whole algorithm is implemented in stationary frame without using Park's transformation.Both the simulation and experimental results validate the effectiveness of the proposed method.
文摘电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Model predictive direct power control,MPDPC)对传统控制策略进行改进。首先建立了三相PWM整流器的数学模型,给出了每个采样周期内的功率变化率,并推导出相邻采样周期之间的功率关系,然后给出基于单矢量的模型预测直接功率控制策略,提出了基于双矢量的模型预测直接功率控制策略,并优选出两个电流矢量,计算在一个采样周期内的作用时间,并对其进行修正。最后,在Matlab/Simulink仿真软件验证了所提控制策略的可行性和有效性。
文摘三相电流源型PWM整流器(Current Source Rectifier,CSR)因其可实现网侧单位因数和正弦波电流控制,具备电能双向传输能力,广泛应用于应急电源系统(Emergency Power Supply,EPS)的电能转换系统。针对CSR的LC滤波电路容易产生谐振,以及带容性负载输出时,数学模型阶数增加导致控制器参数设计复杂等问题,提出了一种组合型有源阻尼解耦控制策略。首先,在d-q坐标下建立带容性负载的CSR数学模型;其次,CSR交流侧采用电容电压反馈(Capacitance Voltage Feedback,CVF)和电感电流反馈(Inductance Current Feedback,ICF)的组合型有源阻尼控制,以抑制交流侧LC滤波器谐振尖峰并提高系统阻尼比,直流侧采用状态反馈控制以稳定直流母线电压;然后,调节d轴开关分量实现系统网侧电压电流同相位运行;最后,通过MATALB/Simulink仿真及实验,验证了该控制策略的可行性。
基金Project supported by the National Natural Science Foundation of China(No.51277164)the Natural Science Foundation of Zhejiang Province,China(No.Y1111002)
文摘We propose a new power conversion system for a permanent magnet synchronous generator(PMSG) based grid-connected wind energy conversion system(WECS) operating with fully-controlled back-to-back current-source converters. On the generator side, two independent current-source rectifiers(CSRs) with space-vector pulse width modulation(SVPWM) are employed to regulate and stabilize DC-link currents. Between DC-link and the electrical grid, a direct-type three-phase five-level current-source inverter(CSI) is inserted as a buffer to regulate real and reactive power fed to the grid and thus adjusts the grid side power-factor. We also present a current-based maximum power point tracking(MPPT) scheme, which helps the generator extract the maximum power through closed-loop regulation of the generator speed. By applying the multilevel modulation and control strategies to the grid-side five-level CSI, a multilevel output current waveform with less distortion is produced, and the bulk requirement of the output capacitor filter to eliminate the harmonic current is reduced. All the proposed concepts are verified by simulation models built in a PSIM environment.