Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
This paper investigates the dividend problem with non-exponential discounting in a dual model.We assume that the dividends can only be paid at a bounded rate and that the surplus process is killed by an exponential ra...This paper investigates the dividend problem with non-exponential discounting in a dual model.We assume that the dividends can only be paid at a bounded rate and that the surplus process is killed by an exponential random variable.Since the non-exponential discount function leads to a time inconsistent control problem,we study the equilibrium HJB-equation and give the associated verification theorem.For the case of a mixture of exponential discount functions and exponential gains,we obtain the explicit equilibrium dividend strategy and the corresponding equilibrium value function.Besides,numerical examples are shown to illustrate our results.展开更多
A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric ...A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.展开更多
At present,the environment impact of refrigerants has been given attention.The binary mixture R152a/R1234ze(E)is an environmentally friendly refrigerant,which solves problems of poor cooling performance of the R1234ze...At present,the environment impact of refrigerants has been given attention.The binary mixture R152a/R1234ze(E)is an environmentally friendly refrigerant,which solves problems of poor cooling performance of the R1234ze(E)cycle and flammability of R152a.In order to obtain its basic thermal and physical parameters,it is necessary to carry out vapor-liquid equilibrium(VLE)research,and the cubic equation of states(EOS)is often used in the calculation of the thermodynamic properties of mixtures.In this paper,the VLE predicted models for R152a/R1234ze(E)in the temperature range of 298.15-328.15 K were constructed using Soave-Redlich-Kwong(SRK),Peng-Robinson(PR)equations of state(EOS)combined with van der Waals(vd W),Huron-Vidal(HV)mixing rules,respectively.The equilibrium pressures and vapor-phase mole fractions of the models were obtained by calculation,and all four models presented an extreme correlation with the experimental data.And it can be concluded that the calculated results of the PR+HV model are closer to the experimental data than those of the other three models,with the average absolute deviation of 0.0027 for vapor-phase mole fraction(AAD(ycal))and the average absolute relative deviation of 0.243%for equilibrium pressure(AARD(pcal)),which provides a basis for accurately calculating the thermophysical properties of the mixture R152a/R1234ze(E).展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
The cooling channel process is a rehocasting method by which the prematerial with globular microstructure can be produced to fit the thixocasting process.A three-phase model based on volume averaging approach is propo...The cooling channel process is a rehocasting method by which the prematerial with globular microstructure can be produced to fit the thixocasting process.A three-phase model based on volume averaging approach is proposed to simulate the cooling channel process of A356 Aluminum alloy.The three phases are liquid,solid and air respectively and treated as separated and interacting continua,sharing a single pressure field.The mass,momentum,enthalpy transport equations for each phase are solved.The developed model can predict the evolution of liquid,solid and air fraction as well as the distribution of grain density and grain size.The effect of pouring temperature on the grain density,grain size and solid fraction is analyzed in detail.展开更多
The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine(PMSM)under open-phase f...The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine(PMSM)under open-phase faulty conditions.The model derivations are extended from previous accurate subdomain models accounting for slotting effects.Compared with most conventional subdomain models for traditional three-phase machines with nonoverlapping winding arrangement,the subdomain model proposed in this paper applied for the 24-slot/4-pole dual three-phase machine with symmetrical overlapping winding arrangement.In order to investigate the postfault electromagnetic performance,the reconfigured phase currents and then current density distribution in stator slots under different open-circuit conditions are discussed.According to the developed model and postfault current density distribution,the steady-state electromagnetic performance,such as the electromagnetic torque and unbalanced magnetic force,under open-circuit faulty conditions are obtained.For validation purposes,finite element analysis(FEA)is employed to validate the analytical results.The result indicate that the postfault electromagnet performance can be accurately predicted by the proposed subdomain model,which is in good agreement with FEA results.展开更多
In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p...In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.展开更多
An in-depth investigation is made on the problem of an arc-shapedinterface insulating crack in a three-phase concentric circularcylindrical piezoelectric composite constitutive model. An exactsolution in series form i...An in-depth investigation is made on the problem of an arc-shapedinterface insulating crack in a three-phase concentric circularcylindrical piezoelectric composite constitutive model. An exactsolution in series form is derived by employing the complex variablemethod. In addition, the distribution of physical quantities such asstresses, strains, electric displacements and electric fields in thewhole field and along the interface is also presented.展开更多
The axial concentration distribution of both particles with betterwetting (forming non-attached system) and poorer wetting (formingattached system) was investigated in a vertical gas-liquid-solidfluidized bed of 4.2 c...The axial concentration distribution of both particles with betterwetting (forming non-attached system) and poorer wetting (formingattached system) was investigated in a vertical gas-liquid-solidfluidized bed of 4.2 cm in diameters and 130 cm in height with thesolids holdup less than 0.05. The one-dimensionalsedimentation-dispersion model could be used satisfactorily todescribe the axial distribution of solids holdup by modifying only amodel parameter, i.e. by means of the terminal settling velocityminus a certain value, which is a functions of gas velocity andconsiders the effect of an additional drag force resulted fromattached rising bubbles.展开更多
A basic solution in series form for the three-phase composite cylindrical model in antiplane piezoelectricity subjected to the action of a singularity in the intermediate matrix region is presented. The solution is ob...A basic solution in series form for the three-phase composite cylindrical model in antiplane piezoelectricity subjected to the action of a singularity in the intermediate matrix region is presented. The solution is obtained through the complex potential approach in conjunction with the techniques of analytical continuation, singularity analysis, Laurent series expansion in an annular region and Cauchy integral formulae, etc. Based on the complex potentials obtained, explicit expressions for the distribution of stress and electric displacement in the three regions are also derived.展开更多
The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition....The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition. Gas-liquid-solid three-phase flow model considering transient thermal interaction with the formation was applied to simulate wellbore fluid to calculate the wellbore temperature and pressure and analyze the influence of different parameters on fluid pressure and temperature distribution in annulus. The results show that the non-isothermal three-phase flow model with thermal consideration gives more accurate prediction of bottom-hole pressure(BHP) compared to other models considering geothermal temperature. Viscous dissipation, the heat produced by friction between the rotating drilling-string and well wall and drill bit drilling, and influx of oil and gas from reservoir have significant impact on the distribution of fluid temperature in the wellbore, which in turn affects the BHP. Bottom-hole fluid temperature decreases with increasing liquid flow rate, circulation time, and specific heat of liquid and gas but it increases with increasing in gas flow rate. It was found that BHP is strongly depended on the gas and liquid flow rates but it has weak dependence on the circulation time and specific heat of liquid and gas. BHP increase with increasing liquid flow rate and decreases with increasing gas flow rate.展开更多
The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissol...The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.展开更多
This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables...This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.展开更多
[Objective] This study aimed to examine the simulated effect of Computable General Equilibrium (CGE)-based agricultural policy simulation system. [Method] The policy simulation platform based on CGE model was constr...[Objective] This study aimed to examine the simulated effect of Computable General Equilibrium (CGE)-based agricultural policy simulation system. [Method] The policy simulation platform based on CGE model was constructed by integrating policy simulation, CGE model and Decision Supporting System (DSS). The scenario analysis method was used to analyze the agricultural subsides policy simulation through empirical analysis. [Result] Farmers were the main beneficiaries of increasing agricultural production subsidies, which increased farmers' income and improved the export of agriculture products. The prototype system could solve the problems in actual policy simulation. [Conclusion] The results lay the foundation for the quantitative study on agricultural subsidy policy in China.展开更多
This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses d...This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.展开更多
Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. Th...Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.展开更多
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight...Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.展开更多
A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. Th...A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
基金Supported by the Shandong Provincial Natural Science Foundation of China(ZR2020MA035 and ZR2023MA093)。
文摘This paper investigates the dividend problem with non-exponential discounting in a dual model.We assume that the dividends can only be paid at a bounded rate and that the surplus process is killed by an exponential random variable.Since the non-exponential discount function leads to a time inconsistent control problem,we study the equilibrium HJB-equation and give the associated verification theorem.For the case of a mixture of exponential discount functions and exponential gains,we obtain the explicit equilibrium dividend strategy and the corresponding equilibrium value function.Besides,numerical examples are shown to illustrate our results.
基金Projected supported by the National Natural Science Foundation of China(Nos.11502123 and11262012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2015JQ01)
文摘A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.
基金supported by the National Natural Science Foundation of China(22068024).
文摘At present,the environment impact of refrigerants has been given attention.The binary mixture R152a/R1234ze(E)is an environmentally friendly refrigerant,which solves problems of poor cooling performance of the R1234ze(E)cycle and flammability of R152a.In order to obtain its basic thermal and physical parameters,it is necessary to carry out vapor-liquid equilibrium(VLE)research,and the cubic equation of states(EOS)is often used in the calculation of the thermodynamic properties of mixtures.In this paper,the VLE predicted models for R152a/R1234ze(E)in the temperature range of 298.15-328.15 K were constructed using Soave-Redlich-Kwong(SRK),Peng-Robinson(PR)equations of state(EOS)combined with van der Waals(vd W),Huron-Vidal(HV)mixing rules,respectively.The equilibrium pressures and vapor-phase mole fractions of the models were obtained by calculation,and all four models presented an extreme correlation with the experimental data.And it can be concluded that the calculated results of the PR+HV model are closer to the experimental data than those of the other three models,with the average absolute deviation of 0.0027 for vapor-phase mole fraction(AAD(ycal))and the average absolute relative deviation of 0.243%for equilibrium pressure(AARD(pcal)),which provides a basis for accurately calculating the thermophysical properties of the mixture R152a/R1234ze(E).
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
文摘The cooling channel process is a rehocasting method by which the prematerial with globular microstructure can be produced to fit the thixocasting process.A three-phase model based on volume averaging approach is proposed to simulate the cooling channel process of A356 Aluminum alloy.The three phases are liquid,solid and air respectively and treated as separated and interacting continua,sharing a single pressure field.The mass,momentum,enthalpy transport equations for each phase are solved.The developed model can predict the evolution of liquid,solid and air fraction as well as the distribution of grain density and grain size.The effect of pouring temperature on the grain density,grain size and solid fraction is analyzed in detail.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010in part by State Key Laboratory of Electrical Insulation and Power Equipment(EIPE19109)。
文摘The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine(PMSM)under open-phase faulty conditions.The model derivations are extended from previous accurate subdomain models accounting for slotting effects.Compared with most conventional subdomain models for traditional three-phase machines with nonoverlapping winding arrangement,the subdomain model proposed in this paper applied for the 24-slot/4-pole dual three-phase machine with symmetrical overlapping winding arrangement.In order to investigate the postfault electromagnetic performance,the reconfigured phase currents and then current density distribution in stator slots under different open-circuit conditions are discussed.According to the developed model and postfault current density distribution,the steady-state electromagnetic performance,such as the electromagnetic torque and unbalanced magnetic force,under open-circuit faulty conditions are obtained.For validation purposes,finite element analysis(FEA)is employed to validate the analytical results.The result indicate that the postfault electromagnet performance can be accurately predicted by the proposed subdomain model,which is in good agreement with FEA results.
基金supported by the National Natural Science Foundation of China(22178190)。
文摘In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.
基金the National Natural Science Foundation of China(No.59635140)the Doctorate Foundation of Xi'an Jiaotong University
文摘An in-depth investigation is made on the problem of an arc-shapedinterface insulating crack in a three-phase concentric circularcylindrical piezoelectric composite constitutive model. An exactsolution in series form is derived by employing the complex variablemethod. In addition, the distribution of physical quantities such asstresses, strains, electric displacements and electric fields in thewhole field and along the interface is also presented.
基金Supported by the Fujian Provincial Education Council (No. JB9940).
文摘The axial concentration distribution of both particles with betterwetting (forming non-attached system) and poorer wetting (formingattached system) was investigated in a vertical gas-liquid-solidfluidized bed of 4.2 cm in diameters and 130 cm in height with thesolids holdup less than 0.05. The one-dimensionalsedimentation-dispersion model could be used satisfactorily todescribe the axial distribution of solids holdup by modifying only amodel parameter, i.e. by means of the terminal settling velocityminus a certain value, which is a functions of gas velocity andconsiders the effect of an additional drag force resulted fromattached rising bubbles.
文摘A basic solution in series form for the three-phase composite cylindrical model in antiplane piezoelectricity subjected to the action of a singularity in the intermediate matrix region is presented. The solution is obtained through the complex potential approach in conjunction with the techniques of analytical continuation, singularity analysis, Laurent series expansion in an annular region and Cauchy integral formulae, etc. Based on the complex potentials obtained, explicit expressions for the distribution of stress and electric displacement in the three regions are also derived.
文摘The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition. Gas-liquid-solid three-phase flow model considering transient thermal interaction with the formation was applied to simulate wellbore fluid to calculate the wellbore temperature and pressure and analyze the influence of different parameters on fluid pressure and temperature distribution in annulus. The results show that the non-isothermal three-phase flow model with thermal consideration gives more accurate prediction of bottom-hole pressure(BHP) compared to other models considering geothermal temperature. Viscous dissipation, the heat produced by friction between the rotating drilling-string and well wall and drill bit drilling, and influx of oil and gas from reservoir have significant impact on the distribution of fluid temperature in the wellbore, which in turn affects the BHP. Bottom-hole fluid temperature decreases with increasing liquid flow rate, circulation time, and specific heat of liquid and gas but it increases with increasing in gas flow rate. It was found that BHP is strongly depended on the gas and liquid flow rates but it has weak dependence on the circulation time and specific heat of liquid and gas. BHP increase with increasing liquid flow rate and decreases with increasing gas flow rate.
基金Project (2005CB6237) supported by the National Basic Research Program of China
文摘The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_110)the Young Scientists Fund of National Natural Science Foundation of China(No.51408253)the Young Scientists Fund of Huaiyin Institute of Technology(No.491713328)
文摘This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.
基金Supported by the National Natural Science Foundation of China (70133011)~~
文摘[Objective] This study aimed to examine the simulated effect of Computable General Equilibrium (CGE)-based agricultural policy simulation system. [Method] The policy simulation platform based on CGE model was constructed by integrating policy simulation, CGE model and Decision Supporting System (DSS). The scenario analysis method was used to analyze the agricultural subsides policy simulation through empirical analysis. [Result] Farmers were the main beneficiaries of increasing agricultural production subsidies, which increased farmers' income and improved the export of agriculture products. The prototype system could solve the problems in actual policy simulation. [Conclusion] The results lay the foundation for the quantitative study on agricultural subsidy policy in China.
文摘This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.
文摘Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
文摘Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202,61174118)+1 种基金the National Science Fund for Outstanding Young Scholars(61222303)Shanghai Leading Academic Discipline Project(B504)
文摘A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.