The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation applicati...The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.展开更多
A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry re...A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m3·h-1 to 3.0 m3·h-1 not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.展开更多
New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor wi...The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor with large particles are studied in terms of the effect of the diameter and loading of the large particles on the liquid dispersion coefficient and mass transfer coefficient, The results showed that increasing the diameter or loading of the large particles tend to decrease dispersion and intensify mass transfer, and that an increase in the diameter of the large particles remarkably decreases the particle loop rate, while the effect of fine particles is much less notable.展开更多
Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results...Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller-Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distri-butions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i,e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data.展开更多
The axial and radial profiles of the gas holdup and bubble parameters in an external-loop airlift reactor of inner diameter 0.09 m and height 1.8 m were measured with the differential pressure method and dual-tip elec...The axial and radial profiles of the gas holdup and bubble parameters in an external-loop airlift reactor of inner diameter 0.09 m and height 1.8 m were measured with the differential pressure method and dual-tip electrical conductivity probe at different superficial gas velocities.Air and water were used as the gas and liquid phases,respectively.The experimental data of the average and local gas holdups,bubble size and its distribution,bubble rising velocity,bubble frequency and gas-liquid interfacial area were obtained,and were analyzed based on the gas-liquid flow field and bubble-bubble interaction.The local gas holdup was correlated in terms of superficial gas velocity,axial height and radial position based on the experimental data.展开更多
文摘The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.
基金supported by the National Natural Science Foundation of China (Nos. 21808234,21878318)the DNL Cooperation Fund,CAS(DNL201902)+3 种基金“Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the CAS(XDA21060400)QIBEBT and Dalian National Laboratory for Clean Energy of the CAS(QIBEBT ZZBS201803,QIBEBT I201907)CAS Key Technology Talent ProgramProject of CNPC-DICP Joint Research Center。
文摘A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m3·h-1 to 3.0 m3·h-1 not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
文摘The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor with large particles are studied in terms of the effect of the diameter and loading of the large particles on the liquid dispersion coefficient and mass transfer coefficient, The results showed that increasing the diameter or loading of the large particles tend to decrease dispersion and intensify mass transfer, and that an increase in the diameter of the large particles remarkably decreases the particle loop rate, while the effect of fine particles is much less notable.
文摘Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller-Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distri-butions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i,e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data.
文摘The axial and radial profiles of the gas holdup and bubble parameters in an external-loop airlift reactor of inner diameter 0.09 m and height 1.8 m were measured with the differential pressure method and dual-tip electrical conductivity probe at different superficial gas velocities.Air and water were used as the gas and liquid phases,respectively.The experimental data of the average and local gas holdups,bubble size and its distribution,bubble rising velocity,bubble frequency and gas-liquid interfacial area were obtained,and were analyzed based on the gas-liquid flow field and bubble-bubble interaction.The local gas holdup was correlated in terms of superficial gas velocity,axial height and radial position based on the experimental data.