Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of D...In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.展开更多
The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output vol...The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output voltage and duty-ratio is deduced by investigating the topology and operating principle.It can provide buck-boost function,and the output voltage of the circuit can keep stable in the case of voltage sagging.Simulation is performed using the MATLAB software,and the experimental circuit is built based on the simulation results,the simulation and experimental results verify the correctness and feasibility of the proposed ac-ac converter topology.展开更多
Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion sys...Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion systems.However,due to the utilization of large amount of semiconductor devices,the reliability of MMCs becomes one of the severe challenges constraining their further development and applications.In this paper,common electrical faults of the MMC have been summarized and analyzed,including open-circuit switching faults,short-circuit switching faults,dc-bus short-circuit faults,and single line-to-ground faults on the ac side.A thorough and comprehensive review of the existing online fault diagnostic methods has been conducted.In addition,fault-tolerant operation strategies for such various fault scenarios in MMCs have been presented.All the fault diagnosis and fault-tolerant operation strategies are comparatively evaluated,which aims to provide a state-of-the-art reference on the MMC reliability for future research and industrial applications.展开更多
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve...Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.展开更多
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli...The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.展开更多
This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequent...This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequently, lower total losses of the transmission system. The fundamental concept and the applied control scheme are introduced in detail. A modified multilevel fundamental switching modulation scheme adopting the multicarrier pulse width modulation concept is presented. A capacitor voltage balancing technique is proposed. With the established simulation model of the 11-level MMC, the modulation and balancing strategy presented are confirmed by MATLAB/SIMULINK simulations. The multicarrier pulse width modulation converter strategy enhances the fundamental output voltage and reduces total harmonic distortion. This new type of converter is suitable for high-voltage drive systems and power system applications such as high voltage dc (HVDC) transmission, reactive power compensation equipment and so on.展开更多
Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link a...Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the s...Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the system. This paper outlines the benefits of the MMC (modular multilevel converter) in front of the cascaded or series connection of converters to achieve high voltage from low voltage storage elements such as supercapacitors. The paper compares three different solutions and shows that the MMC can benefit from weight and volume reduction of the output inductance when shifted switching modulation strategy is used. Using this modulation strategy, not only the output frequency is increased, but also the magnitude of the inductor applied voltage is reduced, reducing inductor size and volume.展开更多
This paper presents a genetic algorithm (GA) optimization technique to find the optimum switching angles of 11-level inverter with minimum number of dc sources and switches in comparison with the cascade multilevel in...This paper presents a genetic algorithm (GA) optimization technique to find the optimum switching angles of 11-level inverter with minimum number of dc sources and switches in comparison with the cascade multilevel inverter in order to minimize the total harmonic distortion (THD) of their output voltage waveform. Theoretical and simulation results for an 11-level converter show the efficiency of the proposed algorithm to determine the optimum angles in order to decrease the undesired harmonics and produce very high quality output voltage waveform.展开更多
In this paper, a novel voltage balancing method of modular multilevel converters (MMCs) is proposed. This method divides the voltages of sub-module capacitors in each arm into several groups and the voltage balancing ...In this paper, a novel voltage balancing method of modular multilevel converters (MMCs) is proposed. This method divides the voltages of sub-module capacitors in each arm into several groups and the voltage balancing is based on these groups. The proposed method can save sorting time greatly compared with the conventional method. Simulation results on a MMC based three-phase inverter show validity of the proposed method.展开更多
Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,...Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.展开更多
The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is co...The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective.展开更多
A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)ba...A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings.展开更多
Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to imp...Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.展开更多
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
文摘In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.
文摘The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output voltage and duty-ratio is deduced by investigating the topology and operating principle.It can provide buck-boost function,and the output voltage of the circuit can keep stable in the case of voltage sagging.Simulation is performed using the MATLAB software,and the experimental circuit is built based on the simulation results,the simulation and experimental results verify the correctness and feasibility of the proposed ac-ac converter topology.
文摘Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion systems.However,due to the utilization of large amount of semiconductor devices,the reliability of MMCs becomes one of the severe challenges constraining their further development and applications.In this paper,common electrical faults of the MMC have been summarized and analyzed,including open-circuit switching faults,short-circuit switching faults,dc-bus short-circuit faults,and single line-to-ground faults on the ac side.A thorough and comprehensive review of the existing online fault diagnostic methods has been conducted.In addition,fault-tolerant operation strategies for such various fault scenarios in MMCs have been presented.All the fault diagnosis and fault-tolerant operation strategies are comparatively evaluated,which aims to provide a state-of-the-art reference on the MMC reliability for future research and industrial applications.
基金the National Key Research and Development Program of China(No.2016YFB0100603)National Natural Science Foundation of China(No.51877193)。
文摘Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.
基金This work was partially supported by the National Natural Science Foundation of China(11847104)General Program of National Natural Science Foundation of China(51977124)+2 种基金Shandong Natural Science Foundation(ZR2019QEE001)Natural Science Foundation of Jiangsu Province(BK20190204)National Distinguished Expert(Youth Talent)Program of China(31390089963058)。
文摘The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.
文摘This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequently, lower total losses of the transmission system. The fundamental concept and the applied control scheme are introduced in detail. A modified multilevel fundamental switching modulation scheme adopting the multicarrier pulse width modulation concept is presented. A capacitor voltage balancing technique is proposed. With the established simulation model of the 11-level MMC, the modulation and balancing strategy presented are confirmed by MATLAB/SIMULINK simulations. The multicarrier pulse width modulation converter strategy enhances the fundamental output voltage and reduces total harmonic distortion. This new type of converter is suitable for high-voltage drive systems and power system applications such as high voltage dc (HVDC) transmission, reactive power compensation equipment and so on.
基金the National Natural Science Foundation of China under Grant 51777085.
文摘Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
文摘Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the system. This paper outlines the benefits of the MMC (modular multilevel converter) in front of the cascaded or series connection of converters to achieve high voltage from low voltage storage elements such as supercapacitors. The paper compares three different solutions and shows that the MMC can benefit from weight and volume reduction of the output inductance when shifted switching modulation strategy is used. Using this modulation strategy, not only the output frequency is increased, but also the magnitude of the inductor applied voltage is reduced, reducing inductor size and volume.
文摘This paper presents a genetic algorithm (GA) optimization technique to find the optimum switching angles of 11-level inverter with minimum number of dc sources and switches in comparison with the cascade multilevel inverter in order to minimize the total harmonic distortion (THD) of their output voltage waveform. Theoretical and simulation results for an 11-level converter show the efficiency of the proposed algorithm to determine the optimum angles in order to decrease the undesired harmonics and produce very high quality output voltage waveform.
文摘In this paper, a novel voltage balancing method of modular multilevel converters (MMCs) is proposed. This method divides the voltages of sub-module capacitors in each arm into several groups and the voltage balancing is based on these groups. The proposed method can save sorting time greatly compared with the conventional method. Simulation results on a MMC based three-phase inverter show validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 50277035)the Natural Science Foundation of Zheji-ang Province (No. Z104441),China
文摘Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.
文摘The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective.
文摘A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings.
文摘Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.