A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit....A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the...The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.展开更多
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i...In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.展开更多
This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or abs...This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The reduction of unbalance voltage and losses in the distribution systems is obtained by actions of reactive power control of the inverter. The TOPF is formulated by current balance equations and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems for different scenarios of solar irradiance and temperature, thus providing a detailed view of the impact of photovoltaic distributed generation.展开更多
As the intermittency and uncertainty of photovoltaic(PV)power generation poses considerable challenges to the power system operation,accurate PV generation estimates are critical for the distribution operation,mainten...As the intermittency and uncertainty of photovoltaic(PV)power generation poses considerable challenges to the power system operation,accurate PV generation estimates are critical for the distribution operation,maintenance,and demand response program implementation because of the increasing usage of distributed PVs.Currently,most residential PVs are installed behind the meter,with only the net load available to the utilities.Therefore,a method for disaggregating the residential PV generation from the net load data is needed to enhance the grid-edge observability.In this study,an unsupervised PV capacity estimation method based on net metering data is proposed,for estimating the PV capacity in the customer’s premise based on the distribution characteristics of nocturnal and diurnal net load extremes.Then,the PV generation disaggregation method is presented.Based on the analysis of the correlation between the nocturnal and diurnal actual loads and the correlation between the PV capacity and their actual PV generation,the PV generation of customers is estimated by applying linear fitting of multiple typical solar exemplars and then disaggregating them into hourly-resolution power profiles.Finally,the anomalies of disaggregated PV power are calibrated and corrected using the estimated capacity.Experiment results on a real-world hourly dataset involving 260 customers show that the proposed PV capacity estimation method achieves good accuracy because of the advantages of robustness and low complexity.Compared with the state-of-the-art PV disaggregation algorithm,the proposed method exhibits a reduction of over 15%for the mean absolute percentage error and over 20%for the root mean square error.展开更多
Currently a large effort is being done with the intention to educate people about how much energy each electrical appliance uses in their houses, since this knowledge is the fundamental basis of energy efficiency prog...Currently a large effort is being done with the intention to educate people about how much energy each electrical appliance uses in their houses, since this knowledge is the fundamental basis of energy efficiency programs that can be managed by the household owners. This paper presents a simple yet functional non-intrusive method for electric power measurement that can be applied in energy efficiency programs, in order to provide a better knowledge of the energy consumption of the appliances in a home.展开更多
Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opport...Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opportunities for power distribution development from automation to intelligentialize, and provide technical supports for the power metering system platform. Because of the importance of metering products and their market demand, this paper focuses on the design of a simple power metering chip with low-cost, low-precision and non-invasive, so as to lay the foundation for the development and practical technology accumulation of power metering products. The design achieves low cost by reducing the acquisition accuracy, simplifying the collection and sampling methods. This paper studies the chip accuracy, sampling methods, collection methods, and the inference of the chip characteristics requirements.展开更多
The aim of this work is to comparatively study two types of control of a three-phase shunt active filter (TSAF) in order to realize a system of depollution of electrical networks so as to improve the quality of electr...The aim of this work is to comparatively study two types of control of a three-phase shunt active filter (TSAF) in order to realize a system of depollution of electrical networks so as to improve the quality of electrical energy. We used two TSA control models which differ in the method of disturbed currents detection, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives more promising results than the linear control method. When connecting a non-linear load (televisions, lamps, variable speed drives, etc.) directly to the public distribution network, the non-linear nature of the load causes the source current to be deformed due to the presence of harmonic currents and voltages. These harmonics thus generate a high reactive power, and therefore considerable electrical losses in the network. One of the solutions to reduce losses on the electricity grid is to incorporate an electronic circuit called a filter into the electricity grid. This work carried out a comparative study of two types of control of a three-phase shunt active filter (TSAF) in order to carry out a system for cleaning up electricity networks in order to improve the quality of electrical energy. We used two TSA control models that differ in the method of detecting disturbed currents, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives better results than the linear control method.展开更多
Mobile power meters allow for cyclists to monitor power output (PO) during training and competition. The Garrnin Vector power meter (VPM) measures PO at the pedal compared to the crank and has been tested in only ...Mobile power meters allow for cyclists to monitor power output (PO) during training and competition. The Garrnin Vector power meter (VPM) measures PO at the pedal compared to the crank and has been tested in only a few limited studies. The purpose of this study was to determine the validity and reproducibility of the VPM by comparing it to the SRM. The VPM validity was tested by (1) a submaximal incremental test, (2) submaximal constant power test, (3) sprint test, and (4) a field test. The reliability of the VPM was tested by repeating the laboratory tests 10 times over a 6 week span. Significant differences (P = 0.046) were found between the mean POSRM (178 ± 1.8 W) and POVPM (163.5 ± 14.7 W) for the submaximal constant-power test. No significant differences were found between the POMAX SRM and the POMAx VPM. The reproducibility of the VPM was lower than the SRM (CV = 8.52 ±4.0 vs 3.48 ± 1.9, 10.66% vs 5.50%, and 67.7% vs 55.3% for the submaximal incremental test, submaximal constant-power test, and field test respectively). The POVPM appears to underestimate the POSRM and is less valid and reliable across various cycling efforts.展开更多
基金This research was supported by the Science and Technology Plan Project of Sichuan Province(No.21YYJC3324)the Science and Technology Plan Project of Sichuan Province(No.2022YFQ0104).
文摘A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
基金This study is supported by the National Natural Science Foundation of China(No.61801019).
文摘The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.
基金National Natural Science Foundation of China(Nos.51767013,52067013)。
文摘In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.
文摘This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The reduction of unbalance voltage and losses in the distribution systems is obtained by actions of reactive power control of the inverter. The TOPF is formulated by current balance equations and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems for different scenarios of solar irradiance and temperature, thus providing a detailed view of the impact of photovoltaic distributed generation.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202112507A-0-5-ZN)the National Nature Science Foundation for Young Scholars of China(No.52107120).
文摘As the intermittency and uncertainty of photovoltaic(PV)power generation poses considerable challenges to the power system operation,accurate PV generation estimates are critical for the distribution operation,maintenance,and demand response program implementation because of the increasing usage of distributed PVs.Currently,most residential PVs are installed behind the meter,with only the net load available to the utilities.Therefore,a method for disaggregating the residential PV generation from the net load data is needed to enhance the grid-edge observability.In this study,an unsupervised PV capacity estimation method based on net metering data is proposed,for estimating the PV capacity in the customer’s premise based on the distribution characteristics of nocturnal and diurnal net load extremes.Then,the PV generation disaggregation method is presented.Based on the analysis of the correlation between the nocturnal and diurnal actual loads and the correlation between the PV capacity and their actual PV generation,the PV generation of customers is estimated by applying linear fitting of multiple typical solar exemplars and then disaggregating them into hourly-resolution power profiles.Finally,the anomalies of disaggregated PV power are calibrated and corrected using the estimated capacity.Experiment results on a real-world hourly dataset involving 260 customers show that the proposed PV capacity estimation method achieves good accuracy because of the advantages of robustness and low complexity.Compared with the state-of-the-art PV disaggregation algorithm,the proposed method exhibits a reduction of over 15%for the mean absolute percentage error and over 20%for the root mean square error.
文摘Currently a large effort is being done with the intention to educate people about how much energy each electrical appliance uses in their houses, since this knowledge is the fundamental basis of energy efficiency programs that can be managed by the household owners. This paper presents a simple yet functional non-intrusive method for electric power measurement that can be applied in energy efficiency programs, in order to provide a better knowledge of the energy consumption of the appliances in a home.
文摘Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opportunities for power distribution development from automation to intelligentialize, and provide technical supports for the power metering system platform. Because of the importance of metering products and their market demand, this paper focuses on the design of a simple power metering chip with low-cost, low-precision and non-invasive, so as to lay the foundation for the development and practical technology accumulation of power metering products. The design achieves low cost by reducing the acquisition accuracy, simplifying the collection and sampling methods. This paper studies the chip accuracy, sampling methods, collection methods, and the inference of the chip characteristics requirements.
文摘The aim of this work is to comparatively study two types of control of a three-phase shunt active filter (TSAF) in order to realize a system of depollution of electrical networks so as to improve the quality of electrical energy. We used two TSA control models which differ in the method of disturbed currents detection, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives more promising results than the linear control method. When connecting a non-linear load (televisions, lamps, variable speed drives, etc.) directly to the public distribution network, the non-linear nature of the load causes the source current to be deformed due to the presence of harmonic currents and voltages. These harmonics thus generate a high reactive power, and therefore considerable electrical losses in the network. One of the solutions to reduce losses on the electricity grid is to incorporate an electronic circuit called a filter into the electricity grid. This work carried out a comparative study of two types of control of a three-phase shunt active filter (TSAF) in order to carry out a system for cleaning up electricity networks in order to improve the quality of electrical energy. We used two TSA control models that differ in the method of detecting disturbed currents, one linear and the other non-linear. The results show that the non-linear control method, although with high calculation blocks, gives better results than the linear control method.
文摘Mobile power meters allow for cyclists to monitor power output (PO) during training and competition. The Garrnin Vector power meter (VPM) measures PO at the pedal compared to the crank and has been tested in only a few limited studies. The purpose of this study was to determine the validity and reproducibility of the VPM by comparing it to the SRM. The VPM validity was tested by (1) a submaximal incremental test, (2) submaximal constant power test, (3) sprint test, and (4) a field test. The reliability of the VPM was tested by repeating the laboratory tests 10 times over a 6 week span. Significant differences (P = 0.046) were found between the mean POSRM (178 ± 1.8 W) and POVPM (163.5 ± 14.7 W) for the submaximal constant-power test. No significant differences were found between the POMAX SRM and the POMAx VPM. The reproducibility of the VPM was lower than the SRM (CV = 8.52 ±4.0 vs 3.48 ± 1.9, 10.66% vs 5.50%, and 67.7% vs 55.3% for the submaximal incremental test, submaximal constant-power test, and field test respectively). The POVPM appears to underestimate the POSRM and is less valid and reliable across various cycling efforts.