Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the constructi...Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.展开更多
The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine(PMSM)under open-phase f...The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine(PMSM)under open-phase faulty conditions.The model derivations are extended from previous accurate subdomain models accounting for slotting effects.Compared with most conventional subdomain models for traditional three-phase machines with nonoverlapping winding arrangement,the subdomain model proposed in this paper applied for the 24-slot/4-pole dual three-phase machine with symmetrical overlapping winding arrangement.In order to investigate the postfault electromagnetic performance,the reconfigured phase currents and then current density distribution in stator slots under different open-circuit conditions are discussed.According to the developed model and postfault current density distribution,the steady-state electromagnetic performance,such as the electromagnetic torque and unbalanced magnetic force,under open-circuit faulty conditions are obtained.For validation purposes,finite element analysis(FEA)is employed to validate the analytical results.The result indicate that the postfault electromagnet performance can be accurately predicted by the proposed subdomain model,which is in good agreement with FEA results.展开更多
Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding ...Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.展开更多
Urban rail transit is one of the most important way for urban residents. However, frequent power failure, especially the short fault hinders the safe and stable operation of rail transit. The research of the transient...Urban rail transit is one of the most important way for urban residents. However, frequent power failure, especially the short fault hinders the safe and stable operation of rail transit. The research of the transient variation of line electrical parameters in short circuit fault is the basis of researches for technology of line protection and short circuit fault location. Based on Matlab/Simulink, a 24-pulse rectifier circuit model is established, the resistance and inductance value of the catenary and rail network are calculated. The short Circuit fault simulation model of DC traction power supply system is established. The short-circuit fault of the traction network at close and distant points are simulated, the transient variation values of fault current with the different fault distance are analyzed. The simulation results show that the transient current peak of the nearby short circuit is oscillatory and convergent due to the nonlinear devices, which proves the accuracy of the model and provides a reference for the precise configuration of the line protection equipment.展开更多
Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to L...Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to Longmenshan fault zone. By contact analysis and viscoelastic finite element method,the influence of fault structure on cross-fault short-leveling is obtained under the same constraint conditions,the results show that:with the increase of the horizontal projection distance of fault,the cumulative displacements of surface increase gradually in the models with fixed dip angles of the fault plane(model 1). However,when the horizontal projection distance exceeds 20 km,the influence of fault?s dip angle on the cumulative displacements of surface short-leveling will decrease significantly,and the cumulative displacements are maintained at about 1. 5 m. However,in the listric fault models(model 2),when the projection distance is less than 20 km,the listric fault structure impedes the sliding of fault. The short-leveling variation rate is only half of model 1;as a result,the ability to reflect the regional stress enhancement by cross-fault short-leveling is further weakened. But when the horizontal projection distance exceeds25 km,the cumulative displacements significantly increase,with the maximum displacement reaching 1. 75 m. The results of equivalent stress show that the listric fault structure causes a sudden increasement in equivalent stress when the horizontal projection distance is 10 km,higher equivalent stress values are accumulated between the projection distance of 5-20 km,and then high-low stress difference zones are formed at the bottom of the fault plane and near the transition zone of low-high dip angle.展开更多
Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ...Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation.展开更多
直流潮流控制器是解决环网式直流配电网的线路潮流不完全可控的有效技术手段。然而,现有方法未能充分发掘其在故障限流中的潜力。该文建立了三有源桥串并联潮流控制器(triple active bridge power flow controller,TAB-PFC)的故障模量...直流潮流控制器是解决环网式直流配电网的线路潮流不完全可控的有效技术手段。然而,现有方法未能充分发掘其在故障限流中的潜力。该文建立了三有源桥串并联潮流控制器(triple active bridge power flow controller,TAB-PFC)的故障模量分析模型,提出一种基于TAB-PFC的双极直流配电网主动限流策略。首先阐述了TAB-PFC的限流原理,提出基于TAB-PFC的主动限流控制策略。然后对TAB-PFC不同故障阶段进行建模,并计及极间互感构建含TAB-PFC的双极直流配电网故障模量等效模型。在此基础上,分析不同参数对TAB-PFC的限流能力的影响,为其参数选取提供依据。在MATLAB/Simulink搭建了含TAB-PFC的双极直流配电网模型,验证了所提主动限流策略的有效性及故障等效电路模型和参数分析的正确性。展开更多
基金supported by National Key Research and Development Program of China(2016YFB0900100)
文摘Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010in part by State Key Laboratory of Electrical Insulation and Power Equipment(EIPE19109)。
文摘The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine(PMSM)under open-phase faulty conditions.The model derivations are extended from previous accurate subdomain models accounting for slotting effects.Compared with most conventional subdomain models for traditional three-phase machines with nonoverlapping winding arrangement,the subdomain model proposed in this paper applied for the 24-slot/4-pole dual three-phase machine with symmetrical overlapping winding arrangement.In order to investigate the postfault electromagnetic performance,the reconfigured phase currents and then current density distribution in stator slots under different open-circuit conditions are discussed.According to the developed model and postfault current density distribution,the steady-state electromagnetic performance,such as the electromagnetic torque and unbalanced magnetic force,under open-circuit faulty conditions are obtained.For validation purposes,finite element analysis(FEA)is employed to validate the analytical results.The result indicate that the postfault electromagnet performance can be accurately predicted by the proposed subdomain model,which is in good agreement with FEA results.
文摘Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.
文摘Urban rail transit is one of the most important way for urban residents. However, frequent power failure, especially the short fault hinders the safe and stable operation of rail transit. The research of the transient variation of line electrical parameters in short circuit fault is the basis of researches for technology of line protection and short circuit fault location. Based on Matlab/Simulink, a 24-pulse rectifier circuit model is established, the resistance and inductance value of the catenary and rail network are calculated. The short Circuit fault simulation model of DC traction power supply system is established. The short-circuit fault of the traction network at close and distant points are simulated, the transient variation values of fault current with the different fault distance are analyzed. The simulation results show that the transient current peak of the nearby short circuit is oscillatory and convergent due to the nonlinear devices, which proves the accuracy of the model and provides a reference for the precise configuration of the line protection equipment.
基金supported by the Youth Science and Technology Fund of China Earthquake Networks Center(QNJJ201801)the National Key R&D Programof China(2018YFC0807000)
文摘Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to Longmenshan fault zone. By contact analysis and viscoelastic finite element method,the influence of fault structure on cross-fault short-leveling is obtained under the same constraint conditions,the results show that:with the increase of the horizontal projection distance of fault,the cumulative displacements of surface increase gradually in the models with fixed dip angles of the fault plane(model 1). However,when the horizontal projection distance exceeds 20 km,the influence of fault?s dip angle on the cumulative displacements of surface short-leveling will decrease significantly,and the cumulative displacements are maintained at about 1. 5 m. However,in the listric fault models(model 2),when the projection distance is less than 20 km,the listric fault structure impedes the sliding of fault. The short-leveling variation rate is only half of model 1;as a result,the ability to reflect the regional stress enhancement by cross-fault short-leveling is further weakened. But when the horizontal projection distance exceeds25 km,the cumulative displacements significantly increase,with the maximum displacement reaching 1. 75 m. The results of equivalent stress show that the listric fault structure causes a sudden increasement in equivalent stress when the horizontal projection distance is 10 km,higher equivalent stress values are accumulated between the projection distance of 5-20 km,and then high-low stress difference zones are formed at the bottom of the fault plane and near the transition zone of low-high dip angle.
基金financial support for this work provided by Eski sehir Technical University Scientific Research Projects Unit with Grant Number 20DRP059support provided by the Turkish Ministry of Science,Industry and Technology under the SANTEZ Project 0286.STZ.2013±2。
文摘Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation.
文摘直流潮流控制器是解决环网式直流配电网的线路潮流不完全可控的有效技术手段。然而,现有方法未能充分发掘其在故障限流中的潜力。该文建立了三有源桥串并联潮流控制器(triple active bridge power flow controller,TAB-PFC)的故障模量分析模型,提出一种基于TAB-PFC的双极直流配电网主动限流策略。首先阐述了TAB-PFC的限流原理,提出基于TAB-PFC的主动限流控制策略。然后对TAB-PFC不同故障阶段进行建模,并计及极间互感构建含TAB-PFC的双极直流配电网故障模量等效模型。在此基础上,分析不同参数对TAB-PFC的限流能力的影响,为其参数选取提供依据。在MATLAB/Simulink搭建了含TAB-PFC的双极直流配电网模型,验证了所提主动限流策略的有效性及故障等效电路模型和参数分析的正确性。