This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase ...This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.展开更多
Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of D...In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.展开更多
The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output vol...The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output voltage and duty-ratio is deduced by investigating the topology and operating principle.It can provide buck-boost function,and the output voltage of the circuit can keep stable in the case of voltage sagging.Simulation is performed using the MATLAB software,and the experimental circuit is built based on the simulation results,the simulation and experimental results verify the correctness and feasibility of the proposed ac-ac converter topology.展开更多
This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses d...This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.展开更多
The coordinated control of parallel three-phase fourwire converters in autonomous AC microgrids is investigated in this paper.First,based on droop control,virtual impedance is inserted in positive-,negative-and zero-s...The coordinated control of parallel three-phase fourwire converters in autonomous AC microgrids is investigated in this paper.First,based on droop control,virtual impedance is inserted in positive-,negative-and zero-sequences to enhance system damping and imbalance power sharing.Then,to facilitate virtual impedance design,small signal models of the three-sequence equivalent circuits are established respectively.Corresponding indexes are proposed to comprehensively evaluate the impact of sequence virtual impedance on current sharing accuracy,voltage quality at the point of common coupling(PCC)and system stability.In addition,constraint of DClink voltage is also considered to avoid over modulation when subjected to unbalanced loads.Furthermore,to address the PCC voltage degradation resulting from virtual impedance,a voltage imbalance compensation method,based on low-bandwidth communication,is proposed.Finally,simulation and experimental results are provided to verify the correctness of the theory model,indicating that the proposed method can achieve PCC voltage restoration while guaranteeing the current sharing accuracy with desirable dynamics.展开更多
A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a tr...A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a transformer.The pulse-width modu-lation signal was used to independently regulate every converter phase.The converter was modelled using a MATLAB®/Simulink®environment and an appropriate voltage control method.The analysis features of the suggested circuit were created and,through established experiments,the simulation results were verified.A single-phase(two levels-four pulses)inverter control circuit was tested and it produced a pure sinusoidal waveform with voltage control.It matches the voltage of the network in terms of amplitude and frequency.A sinusoidal pulse-width modulation approach was performed using a single-phase(two levels-four pulses)pulse-width modulation inverter.The results demonstrated an enhancement in the standard of the output wave and tuned the dead time with a reduction of 63μs compared with 180μs in conventional techniques.展开更多
In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power ...In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions.展开更多
Developing the control of modem power converters is a very expensive and time-consuming task. Time to market can take unacceptable long. FPGA-based real-time simulation of a power stage with analog measured signals ca...Developing the control of modem power converters is a very expensive and time-consuming task. Time to market can take unacceptable long. FPGA-based real-time simulation of a power stage with analog measured signals can reduce significantly the cost and time of testing a product. This new approach is known as HIL (hardware-in-the-loop) testing. A general power converter consists of two main parts: a power level (main circuit) and a digital controller unit, which is usually realized by using some kind of DSP. Testing the controller HW and SW is quite problematic: live tests with a completely assembled converter can be dangerous and expensive. A low-power model of the main circuit can be built under laboratory conditions, but it will have parameters (e.g. time constants and relative losses) differing from the ones of the original system. The solution is the HIL simulation of the main circuit. With this method the simulator can be completely transparent for the controller unit, unlike other computer based simulation methods The subject of this paper is to develop such a real-time simulator using FPGA. The modeled circuit is a three-phase inverter, which is widely used in power converters of renewable energy sources.展开更多
In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a thre...In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the...The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.展开更多
We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to ...We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to the zero-sequence current compensation,the circulating current char-acteristics of 3P4W MMC-DSTATCOM are different from conventional MMCs.Moreover,the distinct working principle of IMMC would affect the features of split capacitor voltage.The decoupled positive-,negative-and zero-sequence second-order and DC components of the circulating current are deduced explicitly.Two proportional-integral controllers with dual dq transformation are employed to suppress the positive-and negative-sequence components of second-order circulating current,while quasi proportional-resonance controller is designed to eliminate the zero-sequence component.Besides,the phenomenon of the unbalanced split capacitor voltages is revealed,and fast-tracking balancing method by controlling zero-sequence current flowing through the split capacitors is provided.Digital simulation results verify the accuracy of the analysis and the feasibility of the suppression methods.展开更多
Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is deco...Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is decoupled from the desired constant DC power,through an auxiliary circuit using energy storage components.This paper provides a comprehensive overview of the evolution of single-phase converter topologies underlining power decoupling techniques.Passive power decoupling techniques were commonly used in single-phase power converters before active power decoupling techniques were developed.Since then,active power decoupling topologies have generally evolved based on three streams of concepts:1)current-reference active power decoupling;2)DC voltage-reference active power decoupling;and 3)AC voltage-reference active power decoupling.The benefits and drawbacks of each topology have been presented and compared with its predecessor,revealing underlying logic in the evolution of the topologies.In addition,a general comparison has also been made in terms of decoupling capacitance/inductance,additional cost,efficiency and complexity of control,providing a benchmark for future power decoupling topologies.展开更多
With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In thi...With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In this paper,a review of one of the most promising fault-tolerant topologies for semiconductor open-circuit fault,called four-switch three-phase(FSTP)topology,is presented in terms of modeling analysis,modulation techniques,and control strategies.The configuration of FSTP voltage source converter(VSC)is illustrated.To minimize the negative effects caused by the innate drawbacks of this fault-tolerant converter topology,considerable research has been carried out regarding modulation techniques and control strategies.The modulation principle for FSTP topology is explained in detail,since the performance of FSTP VSCs relies on it.This paper aims to illustrate current research progress on this fault-tolerant FSTP VSC topology.展开更多
For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the tra...For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.展开更多
The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, present...The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, presenting itself as a voltage source with significant impedance. This means that an inverter using an LCL filter may interact with other grid-connected inverters via the nonideal grid. In this paper, damping optimization of LCLfilters to reduce this interaction is studied for a three-phase voltage source inverter(VSI). Simulation results show that resonant oscillation occurs in a distributed power grid, even if the VSI with an LCL filter is well designed for standalone applications. A small-signal analysis is performed to predict this stability problem and to locate the boundary of the instability using an impedance approach. Based on these analytical results, optimized damping of the LCLfilter can be designed. The oscillation phenomena and optimized damping design are verified by simulations and experimental measurements.展开更多
Power&signal multiplex transmission(P&SMT)is a technique that uses power electronic circuits for communication signal transmission.In this paper,a three-phase cascaded multilevel inverter-based P&S MT syst...Power&signal multiplex transmission(P&SMT)is a technique that uses power electronic circuits for communication signal transmission.In this paper,a three-phase cascaded multilevel inverter-based P&S MT system is proposed.The proposed method can transmit communication signals without using a Controller Area Network bus,thereby reducing the wiring cost of the conventional electric vehicle(EV)communication system.The designed system can achieve motor speed regulation and battery balance discharging for EVs.With the combined pulse width modulation scheme and frequency shift keying method,both power and communication signals are transmitted successfully in a simulation model implemented in Matlab/Simulink.By evaluating the bit error rate of the transmitted signal,the maximum signal rate of the proposed system is determined as 600 bit/s.展开更多
This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in t...This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.展开更多
文摘This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
文摘In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.
文摘The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output voltage and duty-ratio is deduced by investigating the topology and operating principle.It can provide buck-boost function,and the output voltage of the circuit can keep stable in the case of voltage sagging.Simulation is performed using the MATLAB software,and the experimental circuit is built based on the simulation results,the simulation and experimental results verify the correctness and feasibility of the proposed ac-ac converter topology.
文摘This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.
文摘The coordinated control of parallel three-phase fourwire converters in autonomous AC microgrids is investigated in this paper.First,based on droop control,virtual impedance is inserted in positive-,negative-and zero-sequences to enhance system damping and imbalance power sharing.Then,to facilitate virtual impedance design,small signal models of the three-sequence equivalent circuits are established respectively.Corresponding indexes are proposed to comprehensively evaluate the impact of sequence virtual impedance on current sharing accuracy,voltage quality at the point of common coupling(PCC)and system stability.In addition,constraint of DClink voltage is also considered to avoid over modulation when subjected to unbalanced loads.Furthermore,to address the PCC voltage degradation resulting from virtual impedance,a voltage imbalance compensation method,based on low-bandwidth communication,is proposed.Finally,simulation and experimental results are provided to verify the correctness of the theory model,indicating that the proposed method can achieve PCC voltage restoration while guaranteeing the current sharing accuracy with desirable dynamics.
文摘A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a transformer.The pulse-width modu-lation signal was used to independently regulate every converter phase.The converter was modelled using a MATLAB®/Simulink®environment and an appropriate voltage control method.The analysis features of the suggested circuit were created and,through established experiments,the simulation results were verified.A single-phase(two levels-four pulses)inverter control circuit was tested and it produced a pure sinusoidal waveform with voltage control.It matches the voltage of the network in terms of amplitude and frequency.A sinusoidal pulse-width modulation approach was performed using a single-phase(two levels-four pulses)pulse-width modulation inverter.The results demonstrated an enhancement in the standard of the output wave and tuned the dead time with a reduction of 63μs compared with 180μs in conventional techniques.
基金supported by Science and Engineering Research Board,India under SERB POWER FELLOWSHIP Grant (No.SPF/2021/000071)project Grant (No.EEQ/2021/000057)extended by SERB,India。
文摘In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions.
文摘Developing the control of modem power converters is a very expensive and time-consuming task. Time to market can take unacceptable long. FPGA-based real-time simulation of a power stage with analog measured signals can reduce significantly the cost and time of testing a product. This new approach is known as HIL (hardware-in-the-loop) testing. A general power converter consists of two main parts: a power level (main circuit) and a digital controller unit, which is usually realized by using some kind of DSP. Testing the controller HW and SW is quite problematic: live tests with a completely assembled converter can be dangerous and expensive. A low-power model of the main circuit can be built under laboratory conditions, but it will have parameters (e.g. time constants and relative losses) differing from the ones of the original system. The solution is the HIL simulation of the main circuit. With this method the simulator can be completely transparent for the controller unit, unlike other computer based simulation methods The subject of this paper is to develop such a real-time simulator using FPGA. The modeled circuit is a three-phase inverter, which is widely used in power converters of renewable energy sources.
文摘In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
基金supported by National Natural Science Foundation of China(No.51637007,No.51507118)
文摘The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.
基金This work was supported in part by the National Natural Science Foundation of China(No.51807073).
文摘We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to the zero-sequence current compensation,the circulating current char-acteristics of 3P4W MMC-DSTATCOM are different from conventional MMCs.Moreover,the distinct working principle of IMMC would affect the features of split capacitor voltage.The decoupled positive-,negative-and zero-sequence second-order and DC components of the circulating current are deduced explicitly.Two proportional-integral controllers with dual dq transformation are employed to suppress the positive-and negative-sequence components of second-order circulating current,while quasi proportional-resonance controller is designed to eliminate the zero-sequence component.Besides,the phenomenon of the unbalanced split capacitor voltages is revealed,and fast-tracking balancing method by controlling zero-sequence current flowing through the split capacitors is provided.Digital simulation results verify the accuracy of the analysis and the feasibility of the suppression methods.
文摘Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is decoupled from the desired constant DC power,through an auxiliary circuit using energy storage components.This paper provides a comprehensive overview of the evolution of single-phase converter topologies underlining power decoupling techniques.Passive power decoupling techniques were commonly used in single-phase power converters before active power decoupling techniques were developed.Since then,active power decoupling topologies have generally evolved based on three streams of concepts:1)current-reference active power decoupling;2)DC voltage-reference active power decoupling;and 3)AC voltage-reference active power decoupling.The benefits and drawbacks of each topology have been presented and compared with its predecessor,revealing underlying logic in the evolution of the topologies.In addition,a general comparison has also been made in terms of decoupling capacitance/inductance,additional cost,efficiency and complexity of control,providing a benchmark for future power decoupling topologies.
文摘With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In this paper,a review of one of the most promising fault-tolerant topologies for semiconductor open-circuit fault,called four-switch three-phase(FSTP)topology,is presented in terms of modeling analysis,modulation techniques,and control strategies.The configuration of FSTP voltage source converter(VSC)is illustrated.To minimize the negative effects caused by the innate drawbacks of this fault-tolerant converter topology,considerable research has been carried out regarding modulation techniques and control strategies.The modulation principle for FSTP topology is explained in detail,since the performance of FSTP VSCs relies on it.This paper aims to illustrate current research progress on this fault-tolerant FSTP VSC topology.
基金supported by the National Natural Science Foundation of China under Grant 61733015,62473322High-Speed Railway Joint Funds of National Natural Science Foundation of China under Grant U1934204.
文摘For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.
基金supported by National Natural Science Foundation of China(No.51507118)by Open Fund of State Key Laboratory of Operation and Control of Renewable Energy and Storage Systems,China Electric Power Research Institute(Research on renewable energy power generation grid-connected converter fault tolerance evaluation method
文摘The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, presenting itself as a voltage source with significant impedance. This means that an inverter using an LCL filter may interact with other grid-connected inverters via the nonideal grid. In this paper, damping optimization of LCLfilters to reduce this interaction is studied for a three-phase voltage source inverter(VSI). Simulation results show that resonant oscillation occurs in a distributed power grid, even if the VSI with an LCL filter is well designed for standalone applications. A small-signal analysis is performed to predict this stability problem and to locate the boundary of the instability using an impedance approach. Based on these analytical results, optimized damping of the LCLfilter can be designed. The oscillation phenomena and optimized damping design are verified by simulations and experimental measurements.
文摘Power&signal multiplex transmission(P&SMT)is a technique that uses power electronic circuits for communication signal transmission.In this paper,a three-phase cascaded multilevel inverter-based P&S MT system is proposed.The proposed method can transmit communication signals without using a Controller Area Network bus,thereby reducing the wiring cost of the conventional electric vehicle(EV)communication system.The designed system can achieve motor speed regulation and battery balance discharging for EVs.With the combined pulse width modulation scheme and frequency shift keying method,both power and communication signals are transmitted successfully in a simulation model implemented in Matlab/Simulink.By evaluating the bit error rate of the transmitted signal,the maximum signal rate of the proposed system is determined as 600 bit/s.
文摘This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.