Based on time delay technology and MUSIC algorithm, a novel estimating multiple frequencies approach of signal with sampling rate which is least Nyquist sampling rate is presented in this paper. With choosing delay ti...Based on time delay technology and MUSIC algorithm, a novel estimating multiple frequencies approach of signal with sampling rate which is least Nyquist sampling rate is presented in this paper. With choosing delay time properly, the estimated frequencies are unambiguous. Computer simulation confirms its availability.展开更多
Sampled SPWM is an excellent VVVF method of motor speed control, meanwhile the harmonic components of the output wave impairs its applications in practice. A designated harmonic suppression technology is presented for...Sampled SPWM is an excellent VVVF method of motor speed control, meanwhile the harmonic components of the output wave impairs its applications in practice. A designated harmonic suppression technology is presented for sampled SPWM, which is an improved algorithm for the harmonic suppression in high voltage and high frequency spectrum. As the technology is applied in whole speed adjusting range, the voltage can be conveniently controlled and high frequency harmonic of SP WM is also improved.展开更多
文摘Based on time delay technology and MUSIC algorithm, a novel estimating multiple frequencies approach of signal with sampling rate which is least Nyquist sampling rate is presented in this paper. With choosing delay time properly, the estimated frequencies are unambiguous. Computer simulation confirms its availability.
文摘Sampled SPWM is an excellent VVVF method of motor speed control, meanwhile the harmonic components of the output wave impairs its applications in practice. A designated harmonic suppression technology is presented for sampled SPWM, which is an improved algorithm for the harmonic suppression in high voltage and high frequency spectrum. As the technology is applied in whole speed adjusting range, the voltage can be conveniently controlled and high frequency harmonic of SP WM is also improved.
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971217,61971218)the Natural Science Foundation of Jiangsu Province(No.BK20200444)the National Key Research and Development Project(No.2020YFB1807602)。
文摘电力系统中电力电子产生的谐波数量不断增加,谐波问题是一个重要的问题。本文提出了一种改进的互质采样(Coprime sampling,CS)方案,用于谐波和间谐波频率估计。所提方案使用稀疏采样来降低采样率,并将其与现代频谱估计算法相结合。特别是,使用分段互质采样(Segmented coprime sampling,SCS)方法,然后使用求根多重信号分类(Root-multiple signal classification,root-MUSIC)算法代替常用的MUSIC算法可以减少计算工作量并获得准确的频率估计。仿真结果表明,该方法在估计精度上优于传统的均匀采样(Uniform sampling,US)方法。