Due to the slow dynamic power-regulation characteristics of the electrolyser(EL),a novel integrated three-port DC/DC converter topology based on a phase-shifted full-bridge converter and dual active-bridge converter i...Due to the slow dynamic power-regulation characteristics of the electrolyser(EL),a novel integrated three-port DC/DC converter topology based on a phase-shifted full-bridge converter and dual active-bridge converter is proposed in this paper.Especially,the proposed converter can achieve a fast auxiliary response to the EL.This topology has the features of single-stage conversion,high system integration and compatibility with multiple operation modes.The operational principles and a hybrid modulation scheme of the proposed converter are analysed in detail.In addition,the power-transmission characteristics of each port and the soft-switching range are researched.On these bases,six operation modes suitable for a hydrogen energy-storage system are designed.The simulation and a 2-kW scaled-down experimental prototype are established to verify the feasibility and effectiveness of the proposed topology in different operation modes.展开更多
The current-pulse load is generally characterized by wide frequency band and pulse variation,when it is directly connected to the power supply bus.The load power is presented as the instantaneous power.In order to bal...The current-pulse load is generally characterized by wide frequency band and pulse variation,when it is directly connected to the power supply bus.The load power is presented as the instantaneous power.In order to balance the instantaneous power difference between the pulse load and the DC bus,a bi-directional DC/DC converter is usually connected in parallel to compensate for the current fluctuation caused by the characteristics of the pulse load.However,there is a large current spike in the bus current in the pre-stage when the pulse load is changed between light and heavy load.In this paper,a three-state dual-inductance bi-directional converter is proposed.In addition,the load current waveform is directly used to control the inductive branch switches,and an adaptive current feedback control strategy based on the valley voltage loop is proposed to control the power switches.The control method is applicable to the arbitrary change of the frequency and power of the pulse load.Finally,the experimental results show that the threestate dual-inductance bi-directional converter not only eliminates excessive bus current spikes,but also improves the transient response of the three-port power supply system.展开更多
基金supported by the National Key R&D Program of China (no.2018YFB1503100)the National Natural Science Foundation of China (no.51907021).
文摘Due to the slow dynamic power-regulation characteristics of the electrolyser(EL),a novel integrated three-port DC/DC converter topology based on a phase-shifted full-bridge converter and dual active-bridge converter is proposed in this paper.Especially,the proposed converter can achieve a fast auxiliary response to the EL.This topology has the features of single-stage conversion,high system integration and compatibility with multiple operation modes.The operational principles and a hybrid modulation scheme of the proposed converter are analysed in detail.In addition,the power-transmission characteristics of each port and the soft-switching range are researched.On these bases,six operation modes suitable for a hydrogen energy-storage system are designed.The simulation and a 2-kW scaled-down experimental prototype are established to verify the feasibility and effectiveness of the proposed topology in different operation modes.
基金This work was supported by the National Natural Science Foundation of China under Grant 61601378the Sichuan Science and Technology Program under Grant 2019YJ0237Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle,Ministry of Education.
文摘The current-pulse load is generally characterized by wide frequency band and pulse variation,when it is directly connected to the power supply bus.The load power is presented as the instantaneous power.In order to balance the instantaneous power difference between the pulse load and the DC bus,a bi-directional DC/DC converter is usually connected in parallel to compensate for the current fluctuation caused by the characteristics of the pulse load.However,there is a large current spike in the bus current in the pre-stage when the pulse load is changed between light and heavy load.In this paper,a three-state dual-inductance bi-directional converter is proposed.In addition,the load current waveform is directly used to control the inductive branch switches,and an adaptive current feedback control strategy based on the valley voltage loop is proposed to control the power switches.The control method is applicable to the arbitrary change of the frequency and power of the pulse load.Finally,the experimental results show that the threestate dual-inductance bi-directional converter not only eliminates excessive bus current spikes,but also improves the transient response of the three-port power supply system.