A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The resul...A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved.展开更多
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res...For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.展开更多
To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injecte...To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.展开更多
The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of consi...The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of considering the particle-particle interactions and is appropriate for highly laden liquid-solid mixtures. Pre- dicted results were compared and validated with experi- mental results and showed a considerably good agreement. An increase in the particle cut size with increasing solid concentration of the inlet mixture flow was observed and discussed. In addition to this, the erosion on hydrocyclone walls constructed from stainless steel 410, eroded by sand particles (mainly SiOz), was predicted with the Euler-La- grange approach. In this approach, the abrasive solid particles were traced in a Lagrangian reference frame as discrete particles. The increases in the input flow velocity, solid concentration, and the particle size have increased the erosion at the upper part of the cylindrical body of the hydrocyclone, where the tangential inlet flow enters the hydrocyclone. The erosion density in the area between the cylindrical to conical body area, in comparison to other parts of the hydrocyclone, also increased considerably. Moreover, it was observed that an increase in the particle shape factor from 0.1 to 1.0 leads to a decrease of almost 70 % in the average erosion density of the hydrocyclone wall surfaces.展开更多
Three-dimensional simulation of a multiphase flow is performed using the EulerianEulerian finite volume method in order to evaluate the separation efficiency and velocity field of deoiling hydrocyclones.The solution i...Three-dimensional simulation of a multiphase flow is performed using the EulerianEulerian finite volume method in order to evaluate the separation efficiency and velocity field of deoiling hydrocyclones.The solution is developed using a mass conservation-based algorithm(MCBA) with collocated grid arrangement.The mixture approach of the Reynolds stress model is also employed in order to capture features of turbulent multiphase swirling flow.The velocity field and separation efficiency of two different configurations of deoiling hydrocyclones are compared with available experimental data.The comparison shows that the separation efficiency can be predicted with high accuracy using computational fluid dynamics.The velocity fields are also in good agreement with available experimental velocity measurements.Special attention is drawn to swirl intensity in deoiling hydrocyclones and it is shown that the differences in velocity and volume fraction fields of different configurations are related to swirl distribution.展开更多
Pulp fiber length characterization is addressed in this article. It is suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractiona...Pulp fiber length characterization is addressed in this article. It is suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractionation of softwood (coniferous wood) bleached chemithermomechanical pulp (BCTMP) fiber was carried out with a cylin- drical hydrocyclone. Pulp fiber length characteristics in different streams were examined using the fiber quality analyzer (FQA), and the cumulative fiber length fraction, the fiber length fraction density function and the separa- tion index H(L) for different streams were obtained. It is found that H(L) is very useful for characterizing the fiber fractionation performance by indicating the separation capacity of hydrocyclone for individual subgroup of fibers in different streams under different operation conditions. Results of H(L) show that there exists a critical fiber length. A higher proportion of fibers longer than the critical fiber length is in the overflow stream, and a higher proportion of fibers shorter than the critical fiber length in the underflow stream. The data obtained from FQA suggest that the split ratio is the most significant parameter for fiber fractionation performance, which is the best when the split ratio is in the range between 0.14 and 0.2. The effect of feed rate on fiber fractionation performance is weak.展开更多
Based on Bloor & Ingham's approach for determining the fluid fieldand on the analyses of loci of fluid particles inside hydrocyclones,analytical models are developed for calculating the migrationprobability of...Based on Bloor & Ingham's approach for determining the fluid fieldand on the analyses of loci of fluid particles inside hydrocyclones,analytical models are developed for calculating the migrationprobability of single-cone and two-cone hydrocyclones separatinglight dispersions. The calculated results are in good agreement withThew's correlation at different flow rate, split ratio or fluidproperties if the structural parameters keep the same as those ofThew's 35 mm hydrocyclone. The difference between predictionsaccording to two-cone model and single-cone model is nearlynegligible, which is very close to thew's original idea that majorseparation happens in the small cone-angle zone.展开更多
Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid...Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.展开更多
The flow fields inside conventional and rotary hydrocyclones were simulated respectively. In these simulations, water only and oil-water mixture, with distinctly different viscosities, were used as continuous phases. ...The flow fields inside conventional and rotary hydrocyclones were simulated respectively. In these simulations, water only and oil-water mixture, with distinctly different viscosities, were used as continuous phases. Simulation results agreed well with the experimental measurements. Simulation results showed that the conventional hydrocyclone could effectively separate sand from water, but could not separate sand from high viscosity water/oil emulsion. This showed that the viscosity of continuous phases influenced greatly both the separation efficiency and the flow field distribution in the conventional hydrocyclone. For high viscosity oil/water sand dispersion (mixture), the rotary hydrocyclone has better separation performance than the conventional one, with a more favorable flow field distribution.展开更多
Pulp fiber length characterization is addressed in this article. It is .suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fracti...Pulp fiber length characterization is addressed in this article. It is .suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractionation of softwood (coniferous wood) bleached chemithermomechanical pulp (BCTMP) fiber was carried out with a cylindrical hydrocyclone. Pulp fiber length characteristics in different streams were examined using the fiber quality analyzer (FQA), and the cumulative fiber length fraction, the fiber length fraction density function and the separation index H(L) for different streams were obtained. It is found that H(L) is very useful for characterizing the fiber fractionation performance by indicating the separation capacity of hydrocyclone for individual subgroup of fibers in different streams under different operation conditions. Results of H(L) show that there exists a critical fiber length. A higher proportion of fibers longer than the critical fiber length is in the overflow stream, and a higher proportion of fibers shorter than the critical fiber length in the undertow stream. The data obtained from FQA suggest that the split ratio is the most significant parameter for fiber fractionation performance, which is the best when the split ratio is in the range between 0.14 and 0.2. The effect of feed rate on fiber fractionation performance is weak.展开更多
The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and t...The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.展开更多
Hydrocyclones are mechanical devices used in classifying and separating many different types of materials.A classification function of the hydrocyclone has been continually developed for solid–liquid separation.In th...Hydrocyclones are mechanical devices used in classifying and separating many different types of materials.A classification function of the hydrocyclone has been continually developed for solid–liquid separation.In the classification process of solids from liquids,it is desirable to reduce the amount of misplaced material;therefore,the separation sharpness,α(alpha),is a parameter that helps in evaluating misplaced material and has been developed as a model to help the designer predict the performance of the classification.However,the problem with the separation sharpness model is that it cannot be used outside the range of conditions under which it was developed.Therefore,this research aimed to develop the separation sharpness model to predict more accurately and cover a wide range of conditions using the multiple linear regression method.The new regression model of separation sharpness was based on a wide range of both experimental and industrial data-sets of 431 tests collaborating with the additional experiments of 117 tests that were obtained from a total of 548 tests.The new model of separation sharpness can be used in the range of 30–762 mm hydrocyclone body diameters and feed solid concentrations in the range of 0.5 wt%–80 wt%.When compared with the experimental separation sharpness,the accuracy of the separation sharpness model prediction has an error of 4.53%and^of 0.973.展开更多
Three different inlets of hydrocyclone are studied in combination with the construction of a dowrahole system and hydrocyclone. By comparing the relationship between the inlet structure & dimensional parameter of hyd...Three different inlets of hydrocyclone are studied in combination with the construction of a dowrahole system and hydrocyclone. By comparing the relationship between the inlet structure & dimensional parameter of hydrocyclone and separation efficiency & pressure loss, the highest efficiency is obtained from the inlet of an involute curve with increasing depth-width ratio from the three types, in which the separation efficiency and pressure loss all drops slowly, for the length of the channel decreases, while it drops rapidly in the other two. The flow guiding ability of the inlet affects the separation efficiency greatly, so the corresponding involute type of inlet of hydrocyclone fits for downhole oil-water separation is optimized, which serves as a basis for the structural design of downhole hydrocyclone.展开更多
A novel hydrocyclone with guide vanes, named as axial hydrocyclone(AHC), is designed to tackle the problem of oil–water separation faced by most mature oilfields. Optimal design of the AHC is carried out by using num...A novel hydrocyclone with guide vanes, named as axial hydrocyclone(AHC), is designed to tackle the problem of oil–water separation faced by most mature oilfields. Optimal design of the AHC is carried out by using numerical methods. The effects of guide vanes, cone angle, tapered angle and overflow pipe on the oil–water separation are discussed in this paper. The results show that a double swirling flow is generated in the tapered section where oil–water separation occurs. Both the cylindrical and the tapered section have important influences on AHC performance. On the basis of single factor results, response surface methodology is employed to optimize the AHC design. The experimental results indicate that the novel AHC has an excellent performance for the oil–water separation.展开更多
In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copp...In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copper complex. In the simulation, the Eulerian–Eulerian approach was used for solid and liquid phases, the latter being water. In this approach, nine continuous phases were considered for the solid particles with different sizes and one continuous phase for water. The continuity and momentum equations with inclusion of buoyancy and drag forces were solved by the finite volume method. The k–e RNG turbulence model was used for modeling of turbulency. There was a good agreement between the simulation results and the experimental data. After validation of the model accuracy, the effect of inlet solid percentage, pulp inlet velocity, rod inserting in the middle of the hydrocyclone and apex diameter on hydrocyclone performance was investigated. The results showed that by decreasing the inlet solid percentage and increasing the pulp inlet velocity, the efficiency of hydrocyclone increased. Decreasing the apex diameter caused an increase in the hydrocyclone efficiency.展开更多
Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine partic...Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.展开更多
Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding ...Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding cycle load is much high, the apex of cyclone is easily to be blocked and classification efficiency is less. Specifically, the problems of traditional cyclone used in grinding process are as follows: (1) Mill utilization factor is low and its handling capacity is small; (2) Coarse particles mixing in cyclone overflow affects the following separation process and fine particles mixing in underflow causes over-grinding, which affects the total recovery rate of valuable minerals; (3) High grinding cycle load leads to large amount of high-density slurry pumping, which causes high energy consumption and severe wear of cyclones, pipelines and pumps. The applications of new type pre-classification hydrocyclone with centrifugal volute in the first classification process of iron mine mill are introduced in the paper. Pulp particles fed in the centrifugal volute are arranged in advance, so that coarse particles can be far away from the overflow pipe, which can reduce the short circuit current to avoid coarse particles entering overflow and improve classification efficiency and accuracy of cyclone. The strong points of the new cyclone in the coarse classification operation are as follows: (1) Finer overflow and less fine particles mixing in underflow improves classification efficiency more than 10%; (2) Lower ball mill load cycle improves ball capacity more than 10%; (3) Grinding energy consumption reduces by more than 20% and cyclone feed pump reduces energy consumption by more than 12%. In short, new type pre-classification cyclone with centrifugal volute solves the problems of fine particles mixing in underflow, high grinding cycle load and less classification efficiency in the coarse classification operation. Therefore, it has broad application prospects in ferrous metal and non-ferrous metal ore dressing plant.展开更多
Low-grade diasporic bauxite was treated with hydrocyclone of small cone-angle.The effects of apex diameter,feed pressure and feed concentration on separation indexes were tested,and then the separation process was dis...Low-grade diasporic bauxite was treated with hydrocyclone of small cone-angle.The effects of apex diameter,feed pressure and feed concentration on separation indexes were tested,and then the separation process was discussed by hydrokinetics tentatively.The results show that the increase of apex diameter changes the spacial locality of the envelope of zero vertical velocity, resulting in decrease of the ratio of Al2O3/SiO2 in overflow and increase of the recovery of Al2O3 in underflow,while feed pressure and feed concentration have no remarkable effect on the spacial locality of the envelope of zero vertical velocity,however,the separation indexes are improved by the increase of feed pressure,but are worsened by the increase of feed concentration.展开更多
A compound hydrocyclone is a new strategy for oil-water separation. It is based on the study of static and dynamic hydrocyclones. In this paper are introduced its geometric traits and separation mechanism. Experiments...A compound hydrocyclone is a new strategy for oil-water separation. It is based on the study of static and dynamic hydrocyclones. In this paper are introduced its geometric traits and separation mechanism. Experiments are carried out about the relationship between geometric parameters & operating parameters and the separation efficiency of the compound hydrocyclone. Under experimental conditions, the appropriate structural parameters optimized are as follows: The rotating grid is of the straight board type, 3 straight vanes with a length of above 95 ram; the diameter of the overflow vent ranges 3-12 ram; the separation efficiency is better when the large conical angle of the static vortex body is about 20° and the small conical angle in the range of 1° -4° : The separation effect is better under the following conditions: The rotary speed is 1,700-2,400 r/min; the disposal capacity is 5.5 m^3/h; the loss of working pressure is 0.05-0.25MPa; and the split ratio ranges 5%-15%. The experimental study provides a certain basis for the design andapplication of the compound hydrocyclone.展开更多
基金Project (50974033) supported by the National Natural Science Foundation of ChinaProject (N100301002) supported by the Fundamental Research Funds for the Universities, China
文摘A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved.
基金Projects(50974033,51104035)supported by the National Natural Science Foundation of China
文摘For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.
基金Projects(2006BAB11B07,2007BAB15B01)supported by the National Science&Technology Pillar Program during the Eleventh Five-year Plan Period,ChinaProject(2011BAB05B01)supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,China
文摘To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.
基金“Stiftung Rheinland-Pfalz fur Innovation,Mainz,Germany,”for financial support
文摘The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of considering the particle-particle interactions and is appropriate for highly laden liquid-solid mixtures. Pre- dicted results were compared and validated with experi- mental results and showed a considerably good agreement. An increase in the particle cut size with increasing solid concentration of the inlet mixture flow was observed and discussed. In addition to this, the erosion on hydrocyclone walls constructed from stainless steel 410, eroded by sand particles (mainly SiOz), was predicted with the Euler-La- grange approach. In this approach, the abrasive solid particles were traced in a Lagrangian reference frame as discrete particles. The increases in the input flow velocity, solid concentration, and the particle size have increased the erosion at the upper part of the cylindrical body of the hydrocyclone, where the tangential inlet flow enters the hydrocyclone. The erosion density in the area between the cylindrical to conical body area, in comparison to other parts of the hydrocyclone, also increased considerably. Moreover, it was observed that an increase in the particle shape factor from 0.1 to 1.0 leads to a decrease of almost 70 % in the average erosion density of the hydrocyclone wall surfaces.
文摘Three-dimensional simulation of a multiphase flow is performed using the EulerianEulerian finite volume method in order to evaluate the separation efficiency and velocity field of deoiling hydrocyclones.The solution is developed using a mass conservation-based algorithm(MCBA) with collocated grid arrangement.The mixture approach of the Reynolds stress model is also employed in order to capture features of turbulent multiphase swirling flow.The velocity field and separation efficiency of two different configurations of deoiling hydrocyclones are compared with available experimental data.The comparison shows that the separation efficiency can be predicted with high accuracy using computational fluid dynamics.The velocity fields are also in good agreement with available experimental velocity measurements.Special attention is drawn to swirl intensity in deoiling hydrocyclones and it is shown that the differences in velocity and volume fraction fields of different configurations are related to swirl distribution.
基金Supported by the Natural Science and Engineering Research Council of Canada.
文摘Pulp fiber length characterization is addressed in this article. It is suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractionation of softwood (coniferous wood) bleached chemithermomechanical pulp (BCTMP) fiber was carried out with a cylin- drical hydrocyclone. Pulp fiber length characteristics in different streams were examined using the fiber quality analyzer (FQA), and the cumulative fiber length fraction, the fiber length fraction density function and the separa- tion index H(L) for different streams were obtained. It is found that H(L) is very useful for characterizing the fiber fractionation performance by indicating the separation capacity of hydrocyclone for individual subgroup of fibers in different streams under different operation conditions. Results of H(L) show that there exists a critical fiber length. A higher proportion of fibers longer than the critical fiber length is in the overflow stream, and a higher proportion of fibers shorter than the critical fiber length in the underflow stream. The data obtained from FQA suggest that the split ratio is the most significant parameter for fiber fractionation performance, which is the best when the split ratio is in the range between 0.14 and 0.2. The effect of feed rate on fiber fractionation performance is weak.
文摘Based on Bloor & Ingham's approach for determining the fluid fieldand on the analyses of loci of fluid particles inside hydrocyclones,analytical models are developed for calculating the migrationprobability of single-cone and two-cone hydrocyclones separatinglight dispersions. The calculated results are in good agreement withThew's correlation at different flow rate, split ratio or fluidproperties if the structural parameters keep the same as those ofThew's 35 mm hydrocyclone. The difference between predictionsaccording to two-cone model and single-cone model is nearlynegligible, which is very close to thew's original idea that majorseparation happens in the small cone-angle zone.
基金Project(2011AA06A107)supported by the National High Technology Research and Development Program of ChinaProject(2014M551348)supported by China Postdoctoral Science FoundationProject(51504098)supported by the National Natural Science Foundation of China
文摘Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.
文摘The flow fields inside conventional and rotary hydrocyclones were simulated respectively. In these simulations, water only and oil-water mixture, with distinctly different viscosities, were used as continuous phases. Simulation results agreed well with the experimental measurements. Simulation results showed that the conventional hydrocyclone could effectively separate sand from water, but could not separate sand from high viscosity water/oil emulsion. This showed that the viscosity of continuous phases influenced greatly both the separation efficiency and the flow field distribution in the conventional hydrocyclone. For high viscosity oil/water sand dispersion (mixture), the rotary hydrocyclone has better separation performance than the conventional one, with a more favorable flow field distribution.
文摘Pulp fiber length characterization is addressed in this article. It is .suggested that the proposed separation index H(L) is a viable index to the fiber fractionation performance for evaluating hydrocyclones. Fractionation of softwood (coniferous wood) bleached chemithermomechanical pulp (BCTMP) fiber was carried out with a cylindrical hydrocyclone. Pulp fiber length characteristics in different streams were examined using the fiber quality analyzer (FQA), and the cumulative fiber length fraction, the fiber length fraction density function and the separation index H(L) for different streams were obtained. It is found that H(L) is very useful for characterizing the fiber fractionation performance by indicating the separation capacity of hydrocyclone for individual subgroup of fibers in different streams under different operation conditions. Results of H(L) show that there exists a critical fiber length. A higher proportion of fibers longer than the critical fiber length is in the overflow stream, and a higher proportion of fibers shorter than the critical fiber length in the undertow stream. The data obtained from FQA suggest that the split ratio is the most significant parameter for fiber fractionation performance, which is the best when the split ratio is in the range between 0.14 and 0.2. The effect of feed rate on fiber fractionation performance is weak.
基金Supported by the Special Funds for Major State Basic Research (No. 1999-0222-08).
文摘The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.
基金the NSTDA University Industry Research Collaboration(NUI-RC)Thailand for supporting the funding in the research。
文摘Hydrocyclones are mechanical devices used in classifying and separating many different types of materials.A classification function of the hydrocyclone has been continually developed for solid–liquid separation.In the classification process of solids from liquids,it is desirable to reduce the amount of misplaced material;therefore,the separation sharpness,α(alpha),is a parameter that helps in evaluating misplaced material and has been developed as a model to help the designer predict the performance of the classification.However,the problem with the separation sharpness model is that it cannot be used outside the range of conditions under which it was developed.Therefore,this research aimed to develop the separation sharpness model to predict more accurately and cover a wide range of conditions using the multiple linear regression method.The new regression model of separation sharpness was based on a wide range of both experimental and industrial data-sets of 431 tests collaborating with the additional experiments of 117 tests that were obtained from a total of 548 tests.The new model of separation sharpness can be used in the range of 30–762 mm hydrocyclone body diameters and feed solid concentrations in the range of 0.5 wt%–80 wt%.When compared with the experimental separation sharpness,the accuracy of the separation sharpness model prediction has an error of 4.53%and^of 0.973.
文摘Three different inlets of hydrocyclone are studied in combination with the construction of a dowrahole system and hydrocyclone. By comparing the relationship between the inlet structure & dimensional parameter of hydrocyclone and separation efficiency & pressure loss, the highest efficiency is obtained from the inlet of an involute curve with increasing depth-width ratio from the three types, in which the separation efficiency and pressure loss all drops slowly, for the length of the channel decreases, while it drops rapidly in the other two. The flow guiding ability of the inlet affects the separation efficiency greatly, so the corresponding involute type of inlet of hydrocyclone fits for downhole oil-water separation is optimized, which serves as a basis for the structural design of downhole hydrocyclone.
基金Supported by the Scientific Research Project of Beijing Municipal Commission of Education(KM201510017008)the National Natural Science Foundation of China(21677018)+1 种基金the State Key Laboratory of Heavy Oil Processing(SKLOP201403002)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150317)
文摘A novel hydrocyclone with guide vanes, named as axial hydrocyclone(AHC), is designed to tackle the problem of oil–water separation faced by most mature oilfields. Optimal design of the AHC is carried out by using numerical methods. The effects of guide vanes, cone angle, tapered angle and overflow pipe on the oil–water separation are discussed in this paper. The results show that a double swirling flow is generated in the tapered section where oil–water separation occurs. Both the cylindrical and the tapered section have important influences on AHC performance. On the basis of single factor results, response surface methodology is employed to optimize the AHC design. The experimental results indicate that the novel AHC has an excellent performance for the oil–water separation.
文摘In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copper complex. In the simulation, the Eulerian–Eulerian approach was used for solid and liquid phases, the latter being water. In this approach, nine continuous phases were considered for the solid particles with different sizes and one continuous phase for water. The continuity and momentum equations with inclusion of buoyancy and drag forces were solved by the finite volume method. The k–e RNG turbulence model was used for modeling of turbulency. There was a good agreement between the simulation results and the experimental data. After validation of the model accuracy, the effect of inlet solid percentage, pulp inlet velocity, rod inserting in the middle of the hydrocyclone and apex diameter on hydrocyclone performance was investigated. The results showed that by decreasing the inlet solid percentage and increasing the pulp inlet velocity, the efficiency of hydrocyclone increased. Decreasing the apex diameter caused an increase in the hydrocyclone efficiency.
文摘Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.
文摘Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding cycle load is much high, the apex of cyclone is easily to be blocked and classification efficiency is less. Specifically, the problems of traditional cyclone used in grinding process are as follows: (1) Mill utilization factor is low and its handling capacity is small; (2) Coarse particles mixing in cyclone overflow affects the following separation process and fine particles mixing in underflow causes over-grinding, which affects the total recovery rate of valuable minerals; (3) High grinding cycle load leads to large amount of high-density slurry pumping, which causes high energy consumption and severe wear of cyclones, pipelines and pumps. The applications of new type pre-classification hydrocyclone with centrifugal volute in the first classification process of iron mine mill are introduced in the paper. Pulp particles fed in the centrifugal volute are arranged in advance, so that coarse particles can be far away from the overflow pipe, which can reduce the short circuit current to avoid coarse particles entering overflow and improve classification efficiency and accuracy of cyclone. The strong points of the new cyclone in the coarse classification operation are as follows: (1) Finer overflow and less fine particles mixing in underflow improves classification efficiency more than 10%; (2) Lower ball mill load cycle improves ball capacity more than 10%; (3) Grinding energy consumption reduces by more than 20% and cyclone feed pump reduces energy consumption by more than 12%. In short, new type pre-classification cyclone with centrifugal volute solves the problems of fine particles mixing in underflow, high grinding cycle load and less classification efficiency in the coarse classification operation. Therefore, it has broad application prospects in ferrous metal and non-ferrous metal ore dressing plant.
基金Project(2005CB623701)supported by the National Basic Research Program of China
文摘Low-grade diasporic bauxite was treated with hydrocyclone of small cone-angle.The effects of apex diameter,feed pressure and feed concentration on separation indexes were tested,and then the separation process was discussed by hydrokinetics tentatively.The results show that the increase of apex diameter changes the spacial locality of the envelope of zero vertical velocity, resulting in decrease of the ratio of Al2O3/SiO2 in overflow and increase of the recovery of Al2O3 in underflow,while feed pressure and feed concentration have no remarkable effect on the spacial locality of the envelope of zero vertical velocity,however,the separation indexes are improved by the increase of feed pressure,but are worsened by the increase of feed concentration.
文摘A compound hydrocyclone is a new strategy for oil-water separation. It is based on the study of static and dynamic hydrocyclones. In this paper are introduced its geometric traits and separation mechanism. Experiments are carried out about the relationship between geometric parameters & operating parameters and the separation efficiency of the compound hydrocyclone. Under experimental conditions, the appropriate structural parameters optimized are as follows: The rotating grid is of the straight board type, 3 straight vanes with a length of above 95 ram; the diameter of the overflow vent ranges 3-12 ram; the separation efficiency is better when the large conical angle of the static vortex body is about 20° and the small conical angle in the range of 1° -4° : The separation effect is better under the following conditions: The rotary speed is 1,700-2,400 r/min; the disposal capacity is 5.5 m^3/h; the loss of working pressure is 0.05-0.25MPa; and the split ratio ranges 5%-15%. The experimental study provides a certain basis for the design andapplication of the compound hydrocyclone.