At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage betw...At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.展开更多
为快速拟定地锚式独塔悬索桥非对称主缆的合理设计参数,并估算主缆、锚碇、桥塔等工程量,提出非对称主缆合理设计参数计算方法。该方法基于传统抛物线理论,推导主缆的线形以及拉力近似解,通过比选得到满足工程实际控制因素的设计参数合...为快速拟定地锚式独塔悬索桥非对称主缆的合理设计参数,并估算主缆、锚碇、桥塔等工程量,提出非对称主缆合理设计参数计算方法。该方法基于传统抛物线理论,推导主缆的线形以及拉力近似解,通过比选得到满足工程实际控制因素的设计参数合理取值区间,确定主缆垂跨比与高跨比,估算主缆设计截面面积。以济新高速黄河三峡大桥--单跨510 m地锚式独塔回转缆钢桁梁悬索桥为背景,采用该方法计算主缆的合理设计参数,最终选择垂跨比为0.0675,高跨比为0.20,主缆截面面积为339024.2 mm 2,与节线法、分段悬链线法进行对比验证,结果表明:该计算方法路径明确,效率高,精度满足拟定方案与初步估算需要,可用于同类型桥梁的设计。展开更多
基金National Science and Technology Support Programs of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)"333 High-level Personnel Training Project"Special Funded Projects in Jiangsu Province
文摘At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.
文摘为快速拟定地锚式独塔悬索桥非对称主缆的合理设计参数,并估算主缆、锚碇、桥塔等工程量,提出非对称主缆合理设计参数计算方法。该方法基于传统抛物线理论,推导主缆的线形以及拉力近似解,通过比选得到满足工程实际控制因素的设计参数合理取值区间,确定主缆垂跨比与高跨比,估算主缆设计截面面积。以济新高速黄河三峡大桥--单跨510 m地锚式独塔回转缆钢桁梁悬索桥为背景,采用该方法计算主缆的合理设计参数,最终选择垂跨比为0.0675,高跨比为0.20,主缆截面面积为339024.2 mm 2,与节线法、分段悬链线法进行对比验证,结果表明:该计算方法路径明确,效率高,精度满足拟定方案与初步估算需要,可用于同类型桥梁的设计。