This paper investigates characteristics of ironless permanent magnet linear synchronous motor(PMLSM)based on Halbach array used for medium-speed(200km/h)maglev train.Long primary ironless coil is laid in the middle of...This paper investigates characteristics of ironless permanent magnet linear synchronous motor(PMLSM)based on Halbach array used for medium-speed(200km/h)maglev train.Long primary ironless coil is laid in the middle of track and the Halbach permanent magnet array is attached to the bottom of each bogie as a source of traction,U-shape electromagnets at the both sides of the train for levitation.Two dimensional analytical model of single-sided ironless PMLSM based on Halbach array is established,using linear overlay method,the no-load air gap magnetic field is calculated firstly,winding current density distribution is obtained for calculating the characteristics of thrust and normal force against power angle,including force characteristics with equal and unequal pole pitch,the influence of steel sleeper,etc.Besides,the mathematical model for this type motor is built by 3D finite element method,the traction characteristics of medium-speed maglev under maximum speed 200km/h are calculated.The characteristics of this type motor are satisfactory owing to there is no detent force in the motor and thrust force reach maximum meanwhile normal force can be eliminated.Calculation method is verified by comparing finite element results,experimental result on a 200kW type motor further validates the accuracy of calculation and some important conclusions are obtained.展开更多
In this paper a new spherical actuator is designed and its advantages are compared to an existing spherical actuator, which function is limited by several design bottlenecks. First the output torque is too small. Seco...In this paper a new spherical actuator is designed and its advantages are compared to an existing spherical actuator, which function is limited by several design bottlenecks. First the output torque is too small. Second, the attitude is difficult to be accurately detected. The new three-dimen- sional magnetic pole array can solve these major problems. The new actuator features an outer rotor with multiple permanent magnet (PM) poles. Using an analytical solution and the finite element so- lution simulation, the feasibility of the approach is verified. A prototype was developed, tested, and experiments were conducted to obtain the practical value of the magnetic flux density.展开更多
In order to improve the operation efficiency of coaxial magnetic gear(CMG),in this paper,a CMG model with slotted in magnetic modulation ring is proposed.In this model,the permanent magnets(PMs)of internal and externa...In order to improve the operation efficiency of coaxial magnetic gear(CMG),in this paper,a CMG model with slotted in magnetic modulation ring is proposed.In this model,the permanent magnets(PMs)of internal and external rotors are distributed in Halbach array,the inner rotor PMs are equally divided into 3 small pieces,and the outer rotor PMs are equally divided into 2 small pieces.At the same time,the static magnetic modulation ring iron blocks are slotted,each iron block has 3 slots,the width of the slot is 0.4°,and the depth of the single side slot is 1mm.Finally,a two-dimensional model is established,and the eddy current loss and iron loss of the model are optimized,compared with the conventional CMG model,it is found that the changed pattern can increase the internal and external output torque by 4%and 4.12%,respectively.The eddy current loss is reduced by 66.57%,and the iron loss is reduced by 8.9%,which significantly improve the operation efficiency of the CMG.展开更多
A novel topology Halbach permanent magnet array is proposed and applied to the design of a printed circuit board(PCB) axial flux permanent magnet(AFPM) motor. Compared with the traditional coreless AFPM motor, this no...A novel topology Halbach permanent magnet array is proposed and applied to the design of a printed circuit board(PCB) axial flux permanent magnet(AFPM) motor. Compared with the traditional coreless AFPM motor, this novel topology for a Halbach permanent magnet array PCB stator AFPM motor has larger air-gap magnetic flux density and air-gap flux per pole. The magnetic flux leakage is effectively reduced, and the air-gap magnetic density is close to the sine wave. Results of the finite element analysis and prototype experiments verify the feasibility and effectiveness of the novel Halbach permanent magnet array PCB stator motor. A reference basis and practical value for the design of the PCB AFPM motor are provided.展开更多
In this paper,the subdomain analysis model of the eddy current brake(ECB)is established.By comparing with the finite element method,the accuracies of the subdomain model and the finite element model are verified.Furth...In this paper,the subdomain analysis model of the eddy current brake(ECB)is established.By comparing with the finite element method,the accuracies of the subdomain model and the finite element model are verified.Furthermore,the resistance characteristics of radial,axial,andHalbach arrays under impact load are calculated and compared.The axial array has a large braking force coefficient but low critical velocity.The radial array has a low braking force coefficient but high critical velocity.The Halbach array has the advantages of the first two arrays.Not only the braking force coefficient is large,but also the critical speed is high.The parameter analysis of the Halbach array is further carried out.The inner tube thickness and air gap length are the sensitive factors of resistance characteristics.The demagnetization effect is significantly enhanced by the increase of the inner tube thickness.In order to ensure that the ECB does not overheat,the electromagnetic-thermal coupling model is established based on the heat transfer theory.The temperature rise of the inner tube is obvious while that of the permanentmagnet is small.The temperature rise of the inner tube is more than 20 K each time,and that of the permanent magnet is less than 1 K each time.展开更多
A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two str...A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.展开更多
In order to improve the characteristics of a conventional moving coil permanent magnet linear motor (MCPMLM), such as weak points on export force, response time, response speed, we studied a permanent magnet (PM) ...In order to improve the characteristics of a conventional moving coil permanent magnet linear motor (MCPMLM), such as weak points on export force, response time, response speed, we studied a permanent magnet (PM) structure that is a key component of MCPMLM. Different magnetization techniques of single PM and differ- ent array structures of multiple PMs are compared, and a new MCPMLM magnetized along the external field force lines wing eight pieces of a tegular Halbach magnet array with air gaps is proposed as well. The analysis on magnetic field and experimental results of MCPMLM demonstrates that the force between the coil and the PM increases by more than 40%. The simulation frequeney is close to 350 Hz at -3 dB , and the response time is O. 005 s. In addition, the experiment frequency reaches 300 Hz at -3 dB and the response time is 0. 004 s, which agrees well with the simulation results. It means that the developed MCPMLM enjoys advantages in high frequency and rapid response, and can satisfy the requirements of a high speed electro-hydraulic proportional valve.展开更多
The paper presents a Halbach array magnet system(HAMS)for the application within a very first Lorentz force velocimetry(LFV)experiment for electrolytic flows.Here the design,assembling procedure and characterization m...The paper presents a Halbach array magnet system(HAMS)for the application within a very first Lorentz force velocimetry(LFV)experiment for electrolytic flows.Here the design,assembling procedure and characterization method are presented under consideration of the strict limited weight of the system.HAMS increase the Lorentz force outcome by a factor of three compared to the currently used simple magnet systems.Furthermore the fluid profile influence on a LFV measurement on electrolytes is investigated numerically-directly on the planned test setup-and presented for the first time.Here the Lorentz forces,generated by the HAMS,decreases by 8%comparing an ideal plug-like profile at the inlet with a semi-parabolic profile arising near the outlet of the experiment.展开更多
Efficient extraction and recycling methods are an important issue for rare earth elements(REE). The significant differences in their magnetic moments make magnetic separation a promising step. Although the magnetic fi...Efficient extraction and recycling methods are an important issue for rare earth elements(REE). The significant differences in their magnetic moments make magnetic separation a promising step. Although the magnetic field gradient manipulation of ions seemed to be impossible, the robust enrichment of some paramagnetic RE ions was found in the vicinity of the magnet. The studies in recent years resolved the physical paradox of why, despite the Brownian motion of the ions, there is a reproducible enrichment of RE ions in magnetic field gradients. The existence of trigger process and energy barrier was proved.However, these studies usually used only high paramagnetic ions, e.g., Dy(Ⅲ) or Ho(Ⅲ). This work verifies the theory of the possible magnetic separation for 8 different rare earth ions, respectively. For this purpose, concentration distribution in rare earth chloride solutions were measured using a MachZehnder interferometer. The magnetic field was assured by a Halbach configuration to enhance the effect. The results show the classification of RE solutions into 2 classes: Class I contains the REs with low magnetic moment, whereas Class II includes the REs of high magnetic moment. Only the latter group shows the enrichment of ions in the vicinity of the magnet which encourages the implementation of magnetic separation into existing hydrometallurgical technology to enhance the selectivity of REE.展开更多
基金This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1201003.
文摘This paper investigates characteristics of ironless permanent magnet linear synchronous motor(PMLSM)based on Halbach array used for medium-speed(200km/h)maglev train.Long primary ironless coil is laid in the middle of track and the Halbach permanent magnet array is attached to the bottom of each bogie as a source of traction,U-shape electromagnets at the both sides of the train for levitation.Two dimensional analytical model of single-sided ironless PMLSM based on Halbach array is established,using linear overlay method,the no-load air gap magnetic field is calculated firstly,winding current density distribution is obtained for calculating the characteristics of thrust and normal force against power angle,including force characteristics with equal and unequal pole pitch,the influence of steel sleeper,etc.Besides,the mathematical model for this type motor is built by 3D finite element method,the traction characteristics of medium-speed maglev under maximum speed 200km/h are calculated.The characteristics of this type motor are satisfactory owing to there is no detent force in the motor and thrust force reach maximum meanwhile normal force can be eliminated.Calculation method is verified by comparing finite element results,experimental result on a 200kW type motor further validates the accuracy of calculation and some important conclusions are obtained.
基金Supported by the National Key Basic Research and Development Program(973 Program)(2014CB046405)
文摘In this paper a new spherical actuator is designed and its advantages are compared to an existing spherical actuator, which function is limited by several design bottlenecks. First the output torque is too small. Second, the attitude is difficult to be accurately detected. The new three-dimen- sional magnetic pole array can solve these major problems. The new actuator features an outer rotor with multiple permanent magnet (PM) poles. Using an analytical solution and the finite element so- lution simulation, the feasibility of the approach is verified. A prototype was developed, tested, and experiments were conducted to obtain the practical value of the magnetic flux density.
基金supported in part by National Natural Science Foundation of China and China Postdoctoral Science Foundation.(Project No.51707072,2018M632855).
文摘In order to improve the operation efficiency of coaxial magnetic gear(CMG),in this paper,a CMG model with slotted in magnetic modulation ring is proposed.In this model,the permanent magnets(PMs)of internal and external rotors are distributed in Halbach array,the inner rotor PMs are equally divided into 3 small pieces,and the outer rotor PMs are equally divided into 2 small pieces.At the same time,the static magnetic modulation ring iron blocks are slotted,each iron block has 3 slots,the width of the slot is 0.4°,and the depth of the single side slot is 1mm.Finally,a two-dimensional model is established,and the eddy current loss and iron loss of the model are optimized,compared with the conventional CMG model,it is found that the changed pattern can increase the internal and external output torque by 4%and 4.12%,respectively.The eddy current loss is reduced by 66.57%,and the iron loss is reduced by 8.9%,which significantly improve the operation efficiency of the CMG.
基金Project supported by the National Natural Science Foundation of China(No.51577125)
文摘A novel topology Halbach permanent magnet array is proposed and applied to the design of a printed circuit board(PCB) axial flux permanent magnet(AFPM) motor. Compared with the traditional coreless AFPM motor, this novel topology for a Halbach permanent magnet array PCB stator AFPM motor has larger air-gap magnetic flux density and air-gap flux per pole. The magnetic flux leakage is effectively reduced, and the air-gap magnetic density is close to the sine wave. Results of the finite element analysis and prototype experiments verify the feasibility and effectiveness of the novel Halbach permanent magnet array PCB stator motor. A reference basis and practical value for the design of the PCB AFPM motor are provided.
基金supported by the National Natural Science Foundation of China(Grant No.51705253).
文摘In this paper,the subdomain analysis model of the eddy current brake(ECB)is established.By comparing with the finite element method,the accuracies of the subdomain model and the finite element model are verified.Furthermore,the resistance characteristics of radial,axial,andHalbach arrays under impact load are calculated and compared.The axial array has a large braking force coefficient but low critical velocity.The radial array has a low braking force coefficient but high critical velocity.The Halbach array has the advantages of the first two arrays.Not only the braking force coefficient is large,but also the critical speed is high.The parameter analysis of the Halbach array is further carried out.The inner tube thickness and air gap length are the sensitive factors of resistance characteristics.The demagnetization effect is significantly enhanced by the increase of the inner tube thickness.In order to ensure that the ECB does not overheat,the electromagnetic-thermal coupling model is established based on the heat transfer theory.The temperature rise of the inner tube is obvious while that of the permanentmagnet is small.The temperature rise of the inner tube is more than 20 K each time,and that of the permanent magnet is less than 1 K each time.
基金Supported by the Fundamental Research Funds for the Central Universities under Grants Nos. HEUCF101706 and HEUCF111705
文摘A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.
基金supported by The National High Technology Research and Development of China (863 Programme) under Grant No. 2006AA09Z226
文摘In order to improve the characteristics of a conventional moving coil permanent magnet linear motor (MCPMLM), such as weak points on export force, response time, response speed, we studied a permanent magnet (PM) structure that is a key component of MCPMLM. Different magnetization techniques of single PM and differ- ent array structures of multiple PMs are compared, and a new MCPMLM magnetized along the external field force lines wing eight pieces of a tegular Halbach magnet array with air gaps is proposed as well. The analysis on magnetic field and experimental results of MCPMLM demonstrates that the force between the coil and the PM increases by more than 40%. The simulation frequeney is close to 350 Hz at -3 dB , and the response time is O. 005 s. In addition, the experiment frequency reaches 300 Hz at -3 dB and the response time is 0. 004 s, which agrees well with the simulation results. It means that the developed MCPMLM enjoys advantages in high frequency and rapid response, and can satisfy the requirements of a high speed electro-hydraulic proportional valve.
基金Item Sponsored by German Research Foundation (DFG) within the Research Training Group"Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing" (RTG-1567/1)
文摘The paper presents a Halbach array magnet system(HAMS)for the application within a very first Lorentz force velocimetry(LFV)experiment for electrolytic flows.Here the design,assembling procedure and characterization method are presented under consideration of the strict limited weight of the system.HAMS increase the Lorentz force outcome by a factor of three compared to the currently used simple magnet systems.Furthermore the fluid profile influence on a LFV measurement on electrolytes is investigated numerically-directly on the planned test setup-and presented for the first time.Here the Lorentz forces,generated by the HAMS,decreases by 8%comparing an ideal plug-like profile at the inlet with a semi-parabolic profile arising near the outlet of the experiment.
基金Project supported by the German Aerospace Center(DLR)with funds provided by The Federal Ministry for Economic Affairs and Climate Action(BMWi)due to an enactment of the German Bundestag under grant number 50WM1741(project SESIMAG II)。
文摘Efficient extraction and recycling methods are an important issue for rare earth elements(REE). The significant differences in their magnetic moments make magnetic separation a promising step. Although the magnetic field gradient manipulation of ions seemed to be impossible, the robust enrichment of some paramagnetic RE ions was found in the vicinity of the magnet. The studies in recent years resolved the physical paradox of why, despite the Brownian motion of the ions, there is a reproducible enrichment of RE ions in magnetic field gradients. The existence of trigger process and energy barrier was proved.However, these studies usually used only high paramagnetic ions, e.g., Dy(Ⅲ) or Ho(Ⅲ). This work verifies the theory of the possible magnetic separation for 8 different rare earth ions, respectively. For this purpose, concentration distribution in rare earth chloride solutions were measured using a MachZehnder interferometer. The magnetic field was assured by a Halbach configuration to enhance the effect. The results show the classification of RE solutions into 2 classes: Class I contains the REs with low magnetic moment, whereas Class II includes the REs of high magnetic moment. Only the latter group shows the enrichment of ions in the vicinity of the magnet which encourages the implementation of magnetic separation into existing hydrometallurgical technology to enhance the selectivity of REE.