his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/c...his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/cm^(3)),confining pressure(100,200,400 and 600 kPa),and moisture content(13.0%,that is,natural moisture content)were investigated in the present work.A newly developed Duncan-Chang model was established based on the experimental data and Duncan-Chang model.The influence of each parameter on the type of the proposed model curve was also evaluated.The experimental results revealed that with varying dry density and confining pressure,the deviatoric stress–strain curves have diversified characteristics including strain-softening,strain-stabilization and strain-hardening.Under high confining pressure condition,specimens with different densities all showed strain-hardening characteristic.Whereas at the low confining pressure levels,specimens with higher densities gradually transform into softening characteristics.Except for individual compression shear failure,the deformation modes of the specimens all showed swelling deformation,and all the damaged specimens maintained good integrity.Through comparing the experiment results,the strain-softening or strain-hardening behavior of CWG specimens could be predicted following the proposed model with high accuracy.Additionally,the proposed model can accurately characterize the key mechanical indicators,such as tangent modulus,peak value and residual strength,which is simple to implement and depends on fewer parameters.展开更多
Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model...Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.展开更多
The aim of this work is to investigate the influence of rainy weather on traffic accidents of a freeway. The micro-scale driving behaviors in rainy weather and possible vehicle rear-end and sideslip accidents are anal...The aim of this work is to investigate the influence of rainy weather on traffic accidents of a freeway. The micro-scale driving behaviors in rainy weather and possible vehicle rear-end and sideslip accidents are analyzed. An improved CA model of two lanes one-way freeway is presented, where some vehicle accidents will occur when the necessary conditions are simultaneously satisfied. The characteristics of traffic flow under different rainfall intensities are discussed and the accident probabilities are analyzed via the simulation experiments by using variable speed limit (VSL) and incoming flow control. The results indicate that the measures are effective especially during heavy rainstorms or short-time heavy rainfall. According to different rainfall intensities, an appropriate strategy should be adopted in order to reduce the probability of vehicle accidents and enhance traffic flux as well.展开更多
Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the ...Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the geological section of the Yingcheng Formation in the southeast uplift area, this work determined the existence of volcanic weathering crust exists in the study area. The identification marks on the volcanic weathering crust can be recognized on the scale of core, logging, seismic, geochemistry, etc. In the study area, the structure of this crust is divided into clay layer, leached zone, fracture zone and host rocks, which are 5-118 m thick (averaging 27.5 m). The lithology of the weathering crust includes basalt, andesite, rhyolite and volcanic breccia, and the lithofacies are igneous effusive and extrusive facies. The volcanic weathering crusts are clustered together in the Dashen zone and the middle of the Xuzhong zone, whereas in the Shengshen zone and other parts of the Xuzhong zone, they have a relatively scattered distribution. It is a major volcanic reservoir bed, which covers an area of 2104.16 km2. According to the geotectonic setting of the Songliao Basin, the formation process of the weathering crust is complete. Combining the macroscopic and microscopic features of the weathering crust of the Yingcheng Formation in Xujiaweizi with the logging and three-dimensional seismic sections, we established a developmental model of the paleo uplift and a developmental model of the slope belt that coexists with the sag on the Xujiaweizi volcanic weathering crust. In addition, the relationship between the volcanic weathering crust and the formation and distribution of the oil/gas reservoir is discussed.展开更多
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ...Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.展开更多
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium...The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.展开更多
We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests ...We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external(nutrient inflows) and internal(spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic(phyto-and zooplankton) and monimolimnetic(purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth af fect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at diff erent depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions(higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra-and interannual climate and weather effects will be more important for the control of meromixis stability.展开更多
In this report, we summarize the needs of space weather models, and recommend that developing operational prediction models, rather than transitioning from research to operation, is a more feasible and critical way fo...In this report, we summarize the needs of space weather models, and recommend that developing operational prediction models, rather than transitioning from research to operation, is a more feasible and critical way for space weather services in the near future. Operational models for solar wind speed, geomagnetic indices, magnetopause, plasma sheet energetic electrons, inner boundary of ion plasma sheet, energetic electrons in outer radiation belt, and thermospheric density at low Earth orbit, have been developed and will be introduced briefly here. Their applications made a big progress in space weather services during the past two years in China.展开更多
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ...A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.展开更多
A traffic model based on the road surface conditions during adverse weather is presented. The surface of a road is affected by snow, compacted snow, and ice, which affects the traffic behavior. In this paper, a new ma...A traffic model based on the road surface conditions during adverse weather is presented. The surface of a road is affected by snow, compacted snow, and ice, which affects the traffic behavior. In this paper, a new macroscopic traffic flow model based on the transition velocity distribution is proposed which characterizes traffic alignment under adverse weather conditions. Two examples are considered to illustrate the effect of the transition velocity behavior on traffic velocity and density. Simulation results are presented which show that this model provides a more accurate characterization of traffic flow behavior than the well known Payne-Whitham model. The proposed model can be used to reduce accidents and improve road safety during adverse weather conditions.展开更多
Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent ...Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent efforts to improve work zone safety, the frequency and severity of work zone crashes are still a big concern for transportation agencies. Although many studies have been conducted on different work zone safety-related issues, there is a lack of studies that investigate the effect of adverse weather conditions on work zone crash severity. This paper utilizes probit–classification tree, a relatively recent and promising combination of machine learning technique and conventional parametric model, to identify factors affecting work zone crash severity in adverse weather conditions using 8 years of work zone weatherrelated crashes (2006–2013) in Washington State. The key strength of this technique lies in its capability to alleviate the shortcomings of both parametric and nonparametric models. The results showed that both presence of traffic control device and lighting conditions are significant interacting variables in the developed complementary crash severity model for work zone weather-related crashes. Therefore, transportation agencies and contractors need to invest more in lighting equipment and better traffic control strategies at work zones, specifically during adverse weather conditions.展开更多
The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the...The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks.展开更多
The impacts of stratospheric initial conditions and vertical resolution on the stratosphere by raising the model top,refining the vertical resolution,and the assimilation of operationally available observations,includ...The impacts of stratospheric initial conditions and vertical resolution on the stratosphere by raising the model top,refining the vertical resolution,and the assimilation of operationally available observations,including conventional and satellite observations,on continental U.S.winter short-range weather forecasting,were investigated in this study.The initial and predicted wind and temperature profiles were analyzed against conventional observations.Generally,the initial wind and temperature bias profiles were better adjusted when a higher model top and refined vertical resolution were used.Negative impacts were also observed in both the initial wind and temperature profiles,over the lower troposphere.Different from the results by only raising the model top,the assimilation of operationally available observations led to significant improvements in both the troposphere and stratosphere initial conditions when a higher top was used.Predictions made with the adjusted stratospheric initial conditions and refined vertical resolutions showed generally better forecasting skill.The major improvements caused by raising the model top with refined vertical resolution,as well as those caused by data assimilation,were in both cases located in the tropopause and lower stratosphere.Negative impacts were also observed in the predicted near surface wind and lower-tropospheric temperature.These negative impacts were related to the uncertainties caused by more stratospheric information,as well as to some physical processes.A case study shows that when we raise the model top,put more vertical layers in stratosphere and apply data assimilation,the precipitation scores can be slightly improved.However,more analysis is needed due to uncertainties brought by data assimilation.展开更多
Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical...Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical-hydraulic(eh)conductivities were modeled hypothetically and calibrated empirically.Correlations were based on the stochastic models and field-scale hydraulic parameters were contingent on pore-level parameters.By considering variation in pore-size distributions over eh conduction interval,the relations were scaled-up for use at aquifer-level.Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift.VES datasets were inverted by using the computer code IP2Win.The main result is that ln T=0.537(ln Fa)+3.695;the positive gradient indicating eh conduction through pore-surface networks and a proxy of weathered and clayey materials.An inverse(1/F-K)correlation is observed.Hydraulic parameters determined using such approaches may possibly contribute significantly towards sustainable yield management and planning of groundwater resources.展开更多
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec...Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells.展开更多
Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., t...Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., temperature and rainfall for the division Faisalabad (semitropical region of Pakistan).The model fitted is of the linear form:the values of a,b, c have been found. The expected yield has been calculated by using the aridity indices (X1 and X2 ) and the result in the form of coefficient of determination R2 has been found equal to 0.166. The significance of the regression coefficient has been tested, which shows that the contribution to the yield from aridity index at germination and that at ripening is significant.The wheat yields are the results of a wide variety of variables, most of which show varying degree of relationship with one another, some positive and some negative in terms of output. These variables may be technology, fertilizers, pesticides, epidemics, kinds of seeds used, market price of crop and the area under cultivation etc, which can be the source of variation in the wheat yield. Since rainfall during germination and temperature at the ripening periods are the necessary factors for the yield of wheat, for this purpose these parameters have been studied in order to their contribution.展开更多
Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predictin...Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predicting peak wind gusts in numerical models is essential for saving lives and preventing economic losses.This study investigates the climatology of peak wind gusts and their associated gust factors(GFs)using observations in the coastal and open ocean of the northern South China Sea(NSCS),where severe gust-producing weather occurs throughout the year.The stratified climatology demonstrates that the peak wind gust and GF vary with seasons and particularly with weather types.Based on the inversely proportional relationship between the GF and mean wind speed(MWS),a variety of GF models are constructed through least squares regression analysis.Peak gust speed(PGS)forecasts are obtained through the GF models by multiplying the GFs by observed wind speeds rather than forecasted wind speeds.The errors are thus entirely due to the representation of the GF models.The GF models are improved with weather-adaptive GFs,as evaluated by the stratified MWS.Nevertheless,these weather-adaptive GF models show negative bias for predicting stronger PGSs due to insufficient data representation of the extreme wind gusts.The evaluation of the above models provides insight into maximizing the performance of GF models.This study further proposes a stratified process for forecasting peak wind gusts for routine operations.展开更多
Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accurac...Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.展开更多
The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to glob...The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms.展开更多
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests...Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.展开更多
基金Project(42202318)supported by the National Natural Science Foundation of China。
文摘his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/cm^(3)),confining pressure(100,200,400 and 600 kPa),and moisture content(13.0%,that is,natural moisture content)were investigated in the present work.A newly developed Duncan-Chang model was established based on the experimental data and Duncan-Chang model.The influence of each parameter on the type of the proposed model curve was also evaluated.The experimental results revealed that with varying dry density and confining pressure,the deviatoric stress–strain curves have diversified characteristics including strain-softening,strain-stabilization and strain-hardening.Under high confining pressure condition,specimens with different densities all showed strain-hardening characteristic.Whereas at the low confining pressure levels,specimens with higher densities gradually transform into softening characteristics.Except for individual compression shear failure,the deformation modes of the specimens all showed swelling deformation,and all the damaged specimens maintained good integrity.Through comparing the experiment results,the strain-softening or strain-hardening behavior of CWG specimens could be predicted following the proposed model with high accuracy.Additionally,the proposed model can accurately characterize the key mechanical indicators,such as tangent modulus,peak value and residual strength,which is simple to implement and depends on fewer parameters.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the National Natural Science Foundation of China (42074196, 41925018)
文摘Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.
基金supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘The aim of this work is to investigate the influence of rainy weather on traffic accidents of a freeway. The micro-scale driving behaviors in rainy weather and possible vehicle rear-end and sideslip accidents are analyzed. An improved CA model of two lanes one-way freeway is presented, where some vehicle accidents will occur when the necessary conditions are simultaneously satisfied. The characteristics of traffic flow under different rainfall intensities are discussed and the accident probabilities are analyzed via the simulation experiments by using variable speed limit (VSL) and incoming flow control. The results indicate that the measures are effective especially during heavy rainstorms or short-time heavy rainfall. According to different rainfall intensities, an appropriate strategy should be adopted in order to reduce the probability of vehicle accidents and enhance traffic flux as well.
基金supported by the National Natural Science Fund Project(grant No.41430322)the National Basic Research Program of China(grant No.2009CB219306)the Open Fund of the State Key Laboratory Base of Unconventional Oil and Gas Accumulation and Exploitation,Northeast Petroleum University(grant No.2010DS670083-201301)
文摘Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the geological section of the Yingcheng Formation in the southeast uplift area, this work determined the existence of volcanic weathering crust exists in the study area. The identification marks on the volcanic weathering crust can be recognized on the scale of core, logging, seismic, geochemistry, etc. In the study area, the structure of this crust is divided into clay layer, leached zone, fracture zone and host rocks, which are 5-118 m thick (averaging 27.5 m). The lithology of the weathering crust includes basalt, andesite, rhyolite and volcanic breccia, and the lithofacies are igneous effusive and extrusive facies. The volcanic weathering crusts are clustered together in the Dashen zone and the middle of the Xuzhong zone, whereas in the Shengshen zone and other parts of the Xuzhong zone, they have a relatively scattered distribution. It is a major volcanic reservoir bed, which covers an area of 2104.16 km2. According to the geotectonic setting of the Songliao Basin, the formation process of the weathering crust is complete. Combining the macroscopic and microscopic features of the weathering crust of the Yingcheng Formation in Xujiaweizi with the logging and three-dimensional seismic sections, we established a developmental model of the paleo uplift and a developmental model of the slope belt that coexists with the sag on the Xujiaweizi volcanic weathering crust. In addition, the relationship between the volcanic weathering crust and the formation and distribution of the oil/gas reservoir is discussed.
基金Project supported by the Special Scientific Research Project for Public Interest(Grant No.GYHY201206009)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2012-13 and lzujbky-2013-11)the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)
文摘Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.
基金Ministry of Science and Technology of China(2017YFC1501406)National Key Research and Development Plan Program of China(2017YFA0604500)CMA Youth Founding Program(Q201706&NWPC-QNJJ-201702)
文摘The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.
文摘We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external(nutrient inflows) and internal(spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic(phyto-and zooplankton) and monimolimnetic(purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth af fect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at diff erent depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions(higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra-and interannual climate and weather effects will be more important for the control of meromixis stability.
文摘In this report, we summarize the needs of space weather models, and recommend that developing operational prediction models, rather than transitioning from research to operation, is a more feasible and critical way for space weather services in the near future. Operational models for solar wind speed, geomagnetic indices, magnetopause, plasma sheet energetic electrons, inner boundary of ion plasma sheet, energetic electrons in outer radiation belt, and thermospheric density at low Earth orbit, have been developed and will be introduced briefly here. Their applications made a big progress in space weather services during the past two years in China.
基金jointly supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KZCX2EW203)the National Key Basic Research Program of China(Grant No.2013CB430105)the National Department of Public Benefit Research Foundation(Grant No.GYHY201006031)
文摘A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept.
基金Project supported by Higher Education Commission,Pakistan/National Center of Big Data and Cloud Computing
文摘A traffic model based on the road surface conditions during adverse weather is presented. The surface of a road is affected by snow, compacted snow, and ice, which affects the traffic behavior. In this paper, a new macroscopic traffic flow model based on the transition velocity distribution is proposed which characterizes traffic alignment under adverse weather conditions. Two examples are considered to illustrate the effect of the transition velocity behavior on traffic velocity and density. Simulation results are presented which show that this model provides a more accurate characterization of traffic flow behavior than the well known Payne-Whitham model. The proposed model can be used to reduce accidents and improve road safety during adverse weather conditions.
基金sponsored by the Federal Highway Administration(FHWA)in cooperation with the American Association of State Highway and Transportation Officials(AASHTO)
文摘Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent efforts to improve work zone safety, the frequency and severity of work zone crashes are still a big concern for transportation agencies. Although many studies have been conducted on different work zone safety-related issues, there is a lack of studies that investigate the effect of adverse weather conditions on work zone crash severity. This paper utilizes probit–classification tree, a relatively recent and promising combination of machine learning technique and conventional parametric model, to identify factors affecting work zone crash severity in adverse weather conditions using 8 years of work zone weatherrelated crashes (2006–2013) in Washington State. The key strength of this technique lies in its capability to alleviate the shortcomings of both parametric and nonparametric models. The results showed that both presence of traffic control device and lighting conditions are significant interacting variables in the developed complementary crash severity model for work zone weather-related crashes. Therefore, transportation agencies and contractors need to invest more in lighting equipment and better traffic control strategies at work zones, specifically during adverse weather conditions.
基金funded by the National Basic Research Programs of China(Grant Nos.2011CB013504 and 2014CB046901)the National Funds for Distinguished Young Scientists of China(Grant No.51025932)the National Nature Science Foundation of China(Grant No.41372272)
文摘The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks.
基金National Key Research and Development Project(2018YFC1505706)Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(ZJW-2019-08)+3 种基金Program for Scientific Research Start-up Funds of GDOU(R17061)Project of Enhancing School with Innovation of GDOU(230419053)Projects(Platforms)for Construction of Top-ranking Disciplines of GDOU(231419022)Special Funds of Central Finance to Support the Development of Local Colleges and Universities(000041)
文摘The impacts of stratospheric initial conditions and vertical resolution on the stratosphere by raising the model top,refining the vertical resolution,and the assimilation of operationally available observations,including conventional and satellite observations,on continental U.S.winter short-range weather forecasting,were investigated in this study.The initial and predicted wind and temperature profiles were analyzed against conventional observations.Generally,the initial wind and temperature bias profiles were better adjusted when a higher model top and refined vertical resolution were used.Negative impacts were also observed in both the initial wind and temperature profiles,over the lower troposphere.Different from the results by only raising the model top,the assimilation of operationally available observations led to significant improvements in both the troposphere and stratosphere initial conditions when a higher top was used.Predictions made with the adjusted stratospheric initial conditions and refined vertical resolutions showed generally better forecasting skill.The major improvements caused by raising the model top with refined vertical resolution,as well as those caused by data assimilation,were in both cases located in the tropopause and lower stratosphere.Negative impacts were also observed in the predicted near surface wind and lower-tropospheric temperature.These negative impacts were related to the uncertainties caused by more stratospheric information,as well as to some physical processes.A case study shows that when we raise the model top,put more vertical layers in stratosphere and apply data assimilation,the precipitation scores can be slightly improved.However,more analysis is needed due to uncertainties brought by data assimilation.
基金funded by the Kenya Government through the National Research Fund
文摘Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical-hydraulic(eh)conductivities were modeled hypothetically and calibrated empirically.Correlations were based on the stochastic models and field-scale hydraulic parameters were contingent on pore-level parameters.By considering variation in pore-size distributions over eh conduction interval,the relations were scaled-up for use at aquifer-level.Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift.VES datasets were inverted by using the computer code IP2Win.The main result is that ln T=0.537(ln Fa)+3.695;the positive gradient indicating eh conduction through pore-surface networks and a proxy of weathered and clayey materials.An inverse(1/F-K)correlation is observed.Hydraulic parameters determined using such approaches may possibly contribute significantly towards sustainable yield management and planning of groundwater resources.
基金supported by the Science and Technology Grant No.520120210003,Jibei Electric Power Company of the State Grid Corporation of China。
文摘Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells.
文摘Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., temperature and rainfall for the division Faisalabad (semitropical region of Pakistan).The model fitted is of the linear form:the values of a,b, c have been found. The expected yield has been calculated by using the aridity indices (X1 and X2 ) and the result in the form of coefficient of determination R2 has been found equal to 0.166. The significance of the regression coefficient has been tested, which shows that the contribution to the yield from aridity index at germination and that at ripening is significant.The wheat yields are the results of a wide variety of variables, most of which show varying degree of relationship with one another, some positive and some negative in terms of output. These variables may be technology, fertilizers, pesticides, epidemics, kinds of seeds used, market price of crop and the area under cultivation etc, which can be the source of variation in the wheat yield. Since rainfall during germination and temperature at the ripening periods are the necessary factors for the yield of wheat, for this purpose these parameters have been studied in order to their contribution.
基金National Key R&D Program of China(2023YFC3008002)National Natural Science Foundation of China(41805035)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515011288)Key Innovation Team of China Meteorological Administration(CMA2023ZD08)。
文摘Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predicting peak wind gusts in numerical models is essential for saving lives and preventing economic losses.This study investigates the climatology of peak wind gusts and their associated gust factors(GFs)using observations in the coastal and open ocean of the northern South China Sea(NSCS),where severe gust-producing weather occurs throughout the year.The stratified climatology demonstrates that the peak wind gust and GF vary with seasons and particularly with weather types.Based on the inversely proportional relationship between the GF and mean wind speed(MWS),a variety of GF models are constructed through least squares regression analysis.Peak gust speed(PGS)forecasts are obtained through the GF models by multiplying the GFs by observed wind speeds rather than forecasted wind speeds.The errors are thus entirely due to the representation of the GF models.The GF models are improved with weather-adaptive GFs,as evaluated by the stratified MWS.Nevertheless,these weather-adaptive GF models show negative bias for predicting stronger PGSs due to insufficient data representation of the extreme wind gusts.The evaluation of the above models provides insight into maximizing the performance of GF models.This study further proposes a stratified process for forecasting peak wind gusts for routine operations.
文摘Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.
基金funded by the Open Fund of National Key Laboratory of Renewable Energy Grid Integration(China Electric Power Research Institute)(No.NYB51202301624).
文摘The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms.
基金supported by the National Natural Science Foundation of China,NSFC(No.42202318).
文摘Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.