In this paper,an adaptive three-term conjugate gradient method is proposed for solving unconstrained problems,which generates sufficient descent directions at each iteration.Different from the existent methods,a dynam...In this paper,an adaptive three-term conjugate gradient method is proposed for solving unconstrained problems,which generates sufficient descent directions at each iteration.Different from the existent methods,a dynamical adjustment between Hestenes–Stiefel and Dai–Liao conjugacy conditions in our proposed method is developed.Under mild condition,we show that the proposed method converges globally.Numerical experimentation with the new method indicates that it efficiently solves the test problems and therefore is promising.展开更多
In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient me...In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t,the Newton direction condition is equivalent to Dai-Liao conjugacy condition.The strong Wolfe line search conditions are used.The global convergence of this new method is proved.Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and ...In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and less demanding than those defined in [4,10]. A favorite property of this method is that we can choose the initial stepsize as the one-dimensional minimizer of a quadratic modelΦ(t):= f(xk)+tgkTdk+(1/2) t2dkTQkdk, where Qk is a positive definite matrix that carries some second order information of the objective function f. So, this line search may make the stepsize tk more easily accepted. Preliminary numerical results show that this method is efficient.展开更多
A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysi...A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysis, it is shown that search directions of the proposed method satisfy the sufficient descent condition, independent of the line search and the objective function convexity. Global convergence of the method is established under an Armijo–type line search condition. Numerical experiments show practical efficiency of the proposed method.展开更多
In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area,...In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area, therefore, needs to be compensated manually before using one step inverse approach, which causes low efficiency and in consistency with the real situation. To solve this problem, one step positive approach is proposed to simulate the sheet metal stamping process. Firstly the spatial initial solution of one step positive method is preliminarily obtained by using the mapping relationship and area coordinates, then based on the deformation theory the iterative solving is carried out in three-dimensional coordinate system by using quasi-conjugate-gradient method. During iterative process the contact judgment method is introduced to ensure that the nodes on the spatial initial solution are not separated from die surface. The predicted results of sheet metal forming process that include the shape and thickness of the stamped part can be obtained after the iterative solving process. The validity of the proposed approach is verified by comparing the predicted results obtained through the proposed approach with those obtained through the module of one step inverse approach in Autoform and the real stamped part. In one step positive method, the stamped shape of regular sheet can be calculated fast and effectively. During the iterative solution, the quasi-conjugate-gradient method is proposed to take the place of solving system of equations, and it can improve the stability and precision of the algorithm.展开更多
Many methods have been put forward to solve unconstrained optimization problems,among which conjugate gradient method(CG)is very important.With the increasing emergence of large⁃scale problems,the subspace technology ...Many methods have been put forward to solve unconstrained optimization problems,among which conjugate gradient method(CG)is very important.With the increasing emergence of large⁃scale problems,the subspace technology has become particularly important and widely used in the field of optimization.In this study,a new CG method was put forward,which combined subspace technology and a cubic regularization model.Besides,a special scaled norm in a cubic regularization model was analyzed.Under certain conditions,some significant characteristics of the search direction were given and the convergence of the algorithm was built.Numerical comparisons show that for the 145 test functions under the CUTEr library,the proposed method is better than two classical CG methods and two new subspaces conjugate gradient methods.展开更多
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS met...Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.展开更多
In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wol...In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.展开更多
In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global conv...In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under...In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.展开更多
In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the ite...In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix. The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix. This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems, and simultaneously contrasted with other methods. The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations, ft is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.展开更多
In this paper, we propose a method to solve coupled problem. Our computational method is mainly based on conjugate gradient algorithm. We use finite difference method for the structure and finite element method for th...In this paper, we propose a method to solve coupled problem. Our computational method is mainly based on conjugate gradient algorithm. We use finite difference method for the structure and finite element method for the fluid. Conjugate gradient method gives suitable numerical results according to some papers.展开更多
Conjugate gradient method is one of successful methods for solving the unconstrained optimization problems. In this paper, absorbing the advantages of FR and CD methods, a hybrid conjugate gradient method is proposed....Conjugate gradient method is one of successful methods for solving the unconstrained optimization problems. In this paper, absorbing the advantages of FR and CD methods, a hybrid conjugate gradient method is proposed. Under the general Wolfe linear searches, the proposed method can generate the sufficient descent direction at each iterate,and its global convergence property also can be established. Some preliminary numerical results show that the proposed method is effective and stable for the given test problems.展开更多
In this paper, we present the numerical solution for the optimal control problem of monodomain modelwith Rogers-modified FitzHugh-Nagumo ion kinetic. The monodomain model, which is a well-known mathematical model for ...In this paper, we present the numerical solution for the optimal control problem of monodomain modelwith Rogers-modified FitzHugh-Nagumo ion kinetic. The monodomain model, which is a well-known mathematical model for simulation of cardiac electrical activity, appears as the constraint in our problem. Our control objective is to dampen the excitation wavefront of the transmembrane potential in the observation domain using optimal applied current. Various conjugate gradient methods have been applied by researchers for solving this type of optimal control problem. For the present paper, we adopt the modified Fletcher-Reeves method and modified Dai-Yuan methodfor computing the optimal applied current. Numerical results show that the excitation wavefront is successfully dampened out by the optimal applied current when the modified Fletcher-Reeves method is used. However, this is not the case when the modified Dai-Yuan method is employed. Numerical results indicate that the modified Dai-Yuan method failed to converge to the optimal solution when the Armijo line search is used.展开更多
In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce suf?cient descent search direction at every iteration. This property is independent of any line search or the convexity...In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce suf?cient descent search direction at every iteration. This property is independent of any line search or the convexity of the objective function used. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that all these three new hybrid methods are efficient for the given test problems.展开更多
In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. The sufficient descent property holds without any line searches. We use some steplength technique which ...In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. The sufficient descent property holds without any line searches. We use some steplength technique which ensures the Zoutendijk condition to be held, this method is proved to be globally convergent. Finally, we improve it, and do further analysis.展开更多
基金This work was supported by First-Class Disciplines Foundation of Ningxia Hui Autonomous Region(No.NXYLXK2017B09)the National Natural Science Foundation of China(Nos.11601012,11861002,71771030)+3 种基金the Key Project of North Minzu University(No.ZDZX201804)Natural Science Foundation of Ningxia Hui Autonomous Region(Nos.NZ17103,2018AAC03253)Natural Science Foundation of Guangxi Zhuang Autonomous Region(No.2018GXNSFAA138169)Guangxi Key Laboratory of Cryptography and Information Security(No.GCIS201708).
文摘In this paper,an adaptive three-term conjugate gradient method is proposed for solving unconstrained problems,which generates sufficient descent directions at each iteration.Different from the existent methods,a dynamical adjustment between Hestenes–Stiefel and Dai–Liao conjugacy conditions in our proposed method is developed.Under mild condition,we show that the proposed method converges globally.Numerical experimentation with the new method indicates that it efficiently solves the test problems and therefore is promising.
文摘In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t,the Newton direction condition is equivalent to Dai-Liao conjugacy condition.The strong Wolfe line search conditions are used.The global convergence of this new method is proved.Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
基金This work is supported by the Chinese NSF grants 60475042 Guangxi NSF grants 0542043the Foundation of Advanced Research Center of Zhongshan University and Hong Kong
文摘In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and less demanding than those defined in [4,10]. A favorite property of this method is that we can choose the initial stepsize as the one-dimensional minimizer of a quadratic modelΦ(t):= f(xk)+tgkTdk+(1/2) t2dkTQkdk, where Qk is a positive definite matrix that carries some second order information of the objective function f. So, this line search may make the stepsize tk more easily accepted. Preliminary numerical results show that this method is efficient.
基金Supported by Research Council of Semnan University
文摘A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysis, it is shown that search directions of the proposed method satisfy the sufficient descent condition, independent of the line search and the objective function convexity. Global convergence of the method is established under an Armijo–type line search condition. Numerical experiments show practical efficiency of the proposed method.
基金supported by National Natural Science Foundation of China (Grant No. 51075187)
文摘In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area, therefore, needs to be compensated manually before using one step inverse approach, which causes low efficiency and in consistency with the real situation. To solve this problem, one step positive approach is proposed to simulate the sheet metal stamping process. Firstly the spatial initial solution of one step positive method is preliminarily obtained by using the mapping relationship and area coordinates, then based on the deformation theory the iterative solving is carried out in three-dimensional coordinate system by using quasi-conjugate-gradient method. During iterative process the contact judgment method is introduced to ensure that the nodes on the spatial initial solution are not separated from die surface. The predicted results of sheet metal forming process that include the shape and thickness of the stamped part can be obtained after the iterative solving process. The validity of the proposed approach is verified by comparing the predicted results obtained through the proposed approach with those obtained through the module of one step inverse approach in Autoform and the real stamped part. In one step positive method, the stamped shape of regular sheet can be calculated fast and effectively. During the iterative solution, the quasi-conjugate-gradient method is proposed to take the place of solving system of equations, and it can improve the stability and precision of the algorithm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11901561).
文摘Many methods have been put forward to solve unconstrained optimization problems,among which conjugate gradient method(CG)is very important.With the increasing emergence of large⁃scale problems,the subspace technology has become particularly important and widely used in the field of optimization.In this study,a new CG method was put forward,which combined subspace technology and a cubic regularization model.Besides,a special scaled norm in a cubic regularization model was analyzed.Under certain conditions,some significant characteristics of the search direction were given and the convergence of the algorithm was built.Numerical comparisons show that for the 145 test functions under the CUTEr library,the proposed method is better than two classical CG methods and two new subspaces conjugate gradient methods.
文摘Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.
基金Supported by the Fund of Chongqing Education Committee(KJ091104)
文摘In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.
基金Supported by the National Natural Science Foundation of China(10571106) Supported by the Fundamental Research Funds for the Central Universities(10CX04044A)
文摘In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金This work is supported by the National Natural Science Foundation of China
文摘In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.
文摘In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix. The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix. This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems, and simultaneously contrasted with other methods. The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations, ft is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.
文摘In this paper, we propose a method to solve coupled problem. Our computational method is mainly based on conjugate gradient algorithm. We use finite difference method for the structure and finite element method for the fluid. Conjugate gradient method gives suitable numerical results according to some papers.
文摘Conjugate gradient method is one of successful methods for solving the unconstrained optimization problems. In this paper, absorbing the advantages of FR and CD methods, a hybrid conjugate gradient method is proposed. Under the general Wolfe linear searches, the proposed method can generate the sufficient descent direction at each iterate,and its global convergence property also can be established. Some preliminary numerical results show that the proposed method is effective and stable for the given test problems.
文摘In this paper, we present the numerical solution for the optimal control problem of monodomain modelwith Rogers-modified FitzHugh-Nagumo ion kinetic. The monodomain model, which is a well-known mathematical model for simulation of cardiac electrical activity, appears as the constraint in our problem. Our control objective is to dampen the excitation wavefront of the transmembrane potential in the observation domain using optimal applied current. Various conjugate gradient methods have been applied by researchers for solving this type of optimal control problem. For the present paper, we adopt the modified Fletcher-Reeves method and modified Dai-Yuan methodfor computing the optimal applied current. Numerical results show that the excitation wavefront is successfully dampened out by the optimal applied current when the modified Fletcher-Reeves method is used. However, this is not the case when the modified Dai-Yuan method is employed. Numerical results indicate that the modified Dai-Yuan method failed to converge to the optimal solution when the Armijo line search is used.
文摘In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce suf?cient descent search direction at every iteration. This property is independent of any line search or the convexity of the objective function used. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that all these three new hybrid methods are efficient for the given test problems.
文摘In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. The sufficient descent property holds without any line searches. We use some steplength technique which ensures the Zoutendijk condition to be held, this method is proved to be globally convergent. Finally, we improve it, and do further analysis.