Recent research on nanostructures has demonstrated their importance and application in a variety of fields.Nanostructures are used directly or indirectly in drug delivery systems,medicine and pharmaceuticals,biologica...Recent research on nanostructures has demonstrated their importance and application in a variety of fields.Nanostructures are used directly or indirectly in drug delivery systems,medicine and pharmaceuticals,biological sensors,photodetectors,transistors,optical and electronic devices,and so on.The discovery of carbon nanotubes with Y-shaped junctions is motivated by the development of future advanced electronic devices.Because of their interactionwithY-junctions,electronic switches,amplifiers,and three-terminal transistors are of particular interest.Entropy is a concept that determines the uncertainty of a system or network.Entropy concepts are also used in biology,chemistry,and applied mathematics.Based on the requirements,entropy in the form of a graph can be classified into several types.In 1955,graph-based entropy was introduced.One of the types of entropy is edgeweighted entropy.We examined the abstract form of Y-shaped junctions in this study.Some edge-weight-based entropy formulas for the generic view of Y-shaped junctions were created,and some edge-weighted and topological index-based concepts for Y-shaped junctions were discussed in the present paper.展开更多
The ancient emission formulas of Langmuir and Richardson entered the calculations of subtle effects in semiconductor devices as basic ones.But,in the physics of semiconductor devices,these models have long played a pu...The ancient emission formulas of Langmuir and Richardson entered the calculations of subtle effects in semiconductor devices as basic ones.But,in the physics of semiconductor devices,these models have long played a purely decorative role,since they can describe in the most rough approximation only individual sections of the I-V characteristic.But it is precisely the fact that these formulas are basic when describing the barrier current-voltage characteristics(CVC)and prevented the consideration and use of thermoelectric effects in materials on a nano-scale.Thus,as these basic emission models actually imposed a ban on the MEASURABILITY of local thermoelectric effects,the existence of which has already been proven both phenomenologically and experimentally.The quantum transition technique is based on classical models.But it can also be used to correct these classic formulas.The calculation of the spatial transition of electrons over the potential barrier,taking into account the polarity of the kinetic energy,gives currents that are significantly higher than the currents of Langmuir and Richardson,including in the initial section of the I-V characteristic.Moreover,ballistic currents are concentrated at energy levels close to the threshold.This effect of condensation of electrons flowing down the barrier transforms the"anomalous"Seebeck coefficients into normal MEASURABLE Local Thermal EMF,including in p-n junctions.展开更多
基金supported by the National Science Foundation of China (11961021 and 11561019)Guangxi Natural Science Foundation (2020GXNSFAA159084)Hechi University Research Fund for Advanced Talents (2019GCC005).
文摘Recent research on nanostructures has demonstrated their importance and application in a variety of fields.Nanostructures are used directly or indirectly in drug delivery systems,medicine and pharmaceuticals,biological sensors,photodetectors,transistors,optical and electronic devices,and so on.The discovery of carbon nanotubes with Y-shaped junctions is motivated by the development of future advanced electronic devices.Because of their interactionwithY-junctions,electronic switches,amplifiers,and three-terminal transistors are of particular interest.Entropy is a concept that determines the uncertainty of a system or network.Entropy concepts are also used in biology,chemistry,and applied mathematics.Based on the requirements,entropy in the form of a graph can be classified into several types.In 1955,graph-based entropy was introduced.One of the types of entropy is edgeweighted entropy.We examined the abstract form of Y-shaped junctions in this study.Some edge-weight-based entropy formulas for the generic view of Y-shaped junctions were created,and some edge-weighted and topological index-based concepts for Y-shaped junctions were discussed in the present paper.
文摘The ancient emission formulas of Langmuir and Richardson entered the calculations of subtle effects in semiconductor devices as basic ones.But,in the physics of semiconductor devices,these models have long played a purely decorative role,since they can describe in the most rough approximation only individual sections of the I-V characteristic.But it is precisely the fact that these formulas are basic when describing the barrier current-voltage characteristics(CVC)and prevented the consideration and use of thermoelectric effects in materials on a nano-scale.Thus,as these basic emission models actually imposed a ban on the MEASURABILITY of local thermoelectric effects,the existence of which has already been proven both phenomenologically and experimentally.The quantum transition technique is based on classical models.But it can also be used to correct these classic formulas.The calculation of the spatial transition of electrons over the potential barrier,taking into account the polarity of the kinetic energy,gives currents that are significantly higher than the currents of Langmuir and Richardson,including in the initial section of the I-V characteristic.Moreover,ballistic currents are concentrated at energy levels close to the threshold.This effect of condensation of electrons flowing down the barrier transforms the"anomalous"Seebeck coefficients into normal MEASURABLE Local Thermal EMF,including in p-n junctions.