The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed duri...The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed during the laser and colorseparation processes in order to develop practical laser coloring applications.Due to the high oxidation sensitivity of Labasedmetallic glass,it can broaden the color range but make it more complex.Structure coloring by laser processing on thesurface of La-based metallic glass can be conducted after thermoplastic forming.It is particularly important to clarify therole of structure and composition in the surface coloring process.The aim is to study the relationship between amorphoussurface structural color,surface geometry,and oxide formation by laser processing in metallic glasses.The findings revealedthat the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm^(2).In contrast,thesurface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm^(2).Consequently,this study provides a novel concept for the fundamental investigation of laser coloring and establishes a newavenue for practical application.展开更多
To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i...To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.展开更多
As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the lase...As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.展开更多
Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison betwee...Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.展开更多
In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main ...In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.展开更多
Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump a...Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump and probe experiment.The special THz pulse structure of Chinese THz free-electron laser(CTFEL)is utilized to realize such a technique,which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices.We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz,1.6 THz,and 2.4 THz at room temperature and in free space.The obtained electron energy relaxation time for n-GaSb is in line with that measured via,e.g.,four-wave mixing techniques.The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques.This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.展开更多
Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamen...Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamentation and analyzed the ionization dynamics of the filamentation.Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material.The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track.By increasing laser energy,the length of the damage and filamentary track appeared to increase.In addition,the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations,but no increase in the filamentary zone diameter was observed with increasing laser energy.展开更多
Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030...Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.展开更多
The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasm...The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.展开更多
Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydropho...Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.展开更多
Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, co...Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.展开更多
Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystal...Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm.The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm,corresponding to a pumpto-idler photon conversion efficiency of 25%.By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region,one can measure very week mid-infrared radiation with ordinary detectors,which are insensitive to mid-infrared radiation,with a very high gain.A maximum gain factor of about 7 脳 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse.展开更多
Picosecond pulse radiolysis of neat tetrahydrofuran (THF) shows a fast decay of the solvated electron within 2.5ns.The decay of the solvated electron observed at 790nm is because of spur reaction.A numerical simulatio...Picosecond pulse radiolysis of neat tetrahydrofuran (THF) shows a fast decay of the solvated electron within 2.5ns.The decay of the solvated electron observed at 790nm is because of spur reaction.A numerical simulation using time dependent Smoluchowski equation containing a sink term with a distance dependent reaction rate is used to fit the pulse-probe data and shows that the geminate reaction can proceed at long distance in this low polar solvent.展开更多
目的观察755nm皮秒激光联合纳晶微针导入氨甲环酸治疗黄褐斑的疗效临床疗效。方法将40例黄褐斑患者随机分为两组,试验组采用755nm皮秒激光联合纳晶微针导入氨甲环酸治疗,对照组采用单纯皮秒激光治疗,两组患者治疗前、治疗第2个月、第4...目的观察755nm皮秒激光联合纳晶微针导入氨甲环酸治疗黄褐斑的疗效临床疗效。方法将40例黄褐斑患者随机分为两组,试验组采用755nm皮秒激光联合纳晶微针导入氨甲环酸治疗,对照组采用单纯皮秒激光治疗,两组患者治疗前、治疗第2个月、第4个月、第7个月拍照存档,按照黄褐斑皮损面积和严重度指数(melasma area and severity index,MASI)进行评分。结果试验组和对照组从开始治疗的第二个月MASI值就开始出现下降,试验组治疗后第七个月MSAI分值最低,从治疗前(14.86±3.33)下降至(8.33±2.39),对照组的MASI分值下降至(10.23±2.84).试验组分值明显低于对照组(P<0.05)。试验组治疗后MASI下降率为(44.82±5.73)%,明显高于对照组,差异具有统计学意义。结论755nm皮秒激光联合纳晶微针导入氨甲环酸能有效治疗黄褐斑,安全性好,不良反应少。展开更多
目的:探讨超皮秒激光联合透明质酸注射进行面部年轻化治疗的效果。方法:选择2021年1月-2022年6月在笔者医院要求进行面部年轻化治疗的就医者99例,按随机数字表法分为A组(n=33,单纯透明质酸治疗)、B组(n=33,单纯超皮秒激光治疗)、C组(n=...目的:探讨超皮秒激光联合透明质酸注射进行面部年轻化治疗的效果。方法:选择2021年1月-2022年6月在笔者医院要求进行面部年轻化治疗的就医者99例,按随机数字表法分为A组(n=33,单纯透明质酸治疗)、B组(n=33,单纯超皮秒激光治疗)、C组(n=33,超皮秒激光联合透明质酸治疗)。评价疗效,对比皮肤生理指标、皮肤屏障功能、不良反应。结果:治疗后,C组总有效率90.91%高于A组(69.70%)及B组(66.67%)(均P<0.05)。C组VISIA皮肤图像分析仪各项指标、经皮水分散失(Trans epidermal water loss,TEWL)、角质层含水量、表皮皮脂含量均较治疗前改善(P<0.05),且治疗后C组各指标改善均优于A组、B组(P<0.05)。三组不良反应总发生率差异均无统计学意义(P>0.05)。结论:超皮秒激光联合透明质酸注射用于面部年轻化疗效肯定,可改善皮肤生理指标、皮肤屏障功能,且未增加不良反应。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52071222 and 52471180)Guangdong Major Project of Basic and Applied Basic Research,China(Grant No.2019B030302010)+2 种基金Guangdong Basic and Applied Basic Research,China(Grant No.2020B1515130007)the National Key Research and Development Program of China(Grant No.2021YFA0716302)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000).
文摘The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed during the laser and colorseparation processes in order to develop practical laser coloring applications.Due to the high oxidation sensitivity of Labasedmetallic glass,it can broaden the color range but make it more complex.Structure coloring by laser processing on thesurface of La-based metallic glass can be conducted after thermoplastic forming.It is particularly important to clarify therole of structure and composition in the surface coloring process.The aim is to study the relationship between amorphoussurface structural color,surface geometry,and oxide formation by laser processing in metallic glasses.The findings revealedthat the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm^(2).In contrast,thesurface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm^(2).Consequently,this study provides a novel concept for the fundamental investigation of laser coloring and establishes a newavenue for practical application.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202).
文摘To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.
基金the National Key R&D Program of China(No.2016YFA0401100)National Natural Science Foundation of China(Nos.12175154,11875092,and 12005149)+1 种基金the Natural Science Foundation of Top Talent of SZTU(Nos.2019010801001 and 2019020801001)The EPOCH code is used under UK EPSRC contract(EP/G055165/1 and EP/G056803/1).
文摘As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.
基金Supported by National Basic Research Program of China(Grant No.2011CB013004)National Natural Science Foundation of China(Grant No.51005130)Research Fund of State Key Laboratory of Tribology,Tsinghua University(Grant no.SKLT12B06)
文摘Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.
基金the Agency for Science Technology and Research (A*STAR) of Singapore for financial support
文摘In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.
基金the National Natural Science Foundation of China(Grant Nos.U1930116,U1832153,and 11574319)the Fund from the Center of Science and Technology of Hefei Academy of Sciences,China(Grant No.2016FXZY002)。
文摘Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump and probe experiment.The special THz pulse structure of Chinese THz free-electron laser(CTFEL)is utilized to realize such a technique,which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices.We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz,1.6 THz,and 2.4 THz at room temperature and in free space.The obtained electron energy relaxation time for n-GaSb is in line with that measured via,e.g.,four-wave mixing techniques.The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques.This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.
基金National Natural Science Foundation of China(51575013,51275011)National Key R&D Program of China(2018 YFB1107500)
文摘Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamentation and analyzed the ionization dynamics of the filamentation.Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material.The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track.By increasing laser energy,the length of the damage and filamentary track appeared to increase.In addition,the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations,but no increase in the filamentary zone diameter was observed with increasing laser energy.
基金Funded by National Natural Science Foundation of China(Nos.51332004,51302220,51472201)the Major National Scientific Instrument and Equipment Development Project(No.2011YQ12007504)+1 种基金Natural Science Foundation of Shaanxi Province(No.2014JQ6197)the Foundation Research of Northwestern Polytechnical University(No.JC20120204)
文摘Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.
基金Project(51975017) supported by the National Natural Science Foundation of ChinaProject(KZ202110005012) supported by the Scientific Research Project of Beijing Educational Committee+1 种基金ChinaProject(2018YFB1107500) supported by the National Key R&D Program of China。
文摘The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.
基金Project(52075302)supported by the National Natural Science Foundation of ChinaProject(ZR2021QE247)supported by the Shandong Provincial Natural Science Foundation,China+2 种基金Projects(ZR2018ZB0521,ZR2018ZA0401)supported by the Major Basic Research of Shandong Provincial Natural Science Foundation,ChinaProject(Kfkt2020-09)supported by the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(52075302)supported by the Key Laboratory of High-efficiency and Clean Mechanical Manufacture(Shandong University),Ministry of Education,China。
文摘Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1631240)the Education Commission Program of BeijingBeijing Natural Science Foundation(Grant No.KZ201510005001)
文摘Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61078005)the National Basic ResearchProgram of China (Grant No. 2007CB613205)the China Postdoctoral Science Foundation
文摘Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm.The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm,corresponding to a pumpto-idler photon conversion efficiency of 25%.By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region,one can measure very week mid-infrared radiation with ordinary detectors,which are insensitive to mid-infrared radiation,with a very high gain.A maximum gain factor of about 7 脳 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse.
文摘Picosecond pulse radiolysis of neat tetrahydrofuran (THF) shows a fast decay of the solvated electron within 2.5ns.The decay of the solvated electron observed at 790nm is because of spur reaction.A numerical simulation using time dependent Smoluchowski equation containing a sink term with a distance dependent reaction rate is used to fit the pulse-probe data and shows that the geminate reaction can proceed at long distance in this low polar solvent.
文摘目的观察755nm皮秒激光联合纳晶微针导入氨甲环酸治疗黄褐斑的疗效临床疗效。方法将40例黄褐斑患者随机分为两组,试验组采用755nm皮秒激光联合纳晶微针导入氨甲环酸治疗,对照组采用单纯皮秒激光治疗,两组患者治疗前、治疗第2个月、第4个月、第7个月拍照存档,按照黄褐斑皮损面积和严重度指数(melasma area and severity index,MASI)进行评分。结果试验组和对照组从开始治疗的第二个月MASI值就开始出现下降,试验组治疗后第七个月MSAI分值最低,从治疗前(14.86±3.33)下降至(8.33±2.39),对照组的MASI分值下降至(10.23±2.84).试验组分值明显低于对照组(P<0.05)。试验组治疗后MASI下降率为(44.82±5.73)%,明显高于对照组,差异具有统计学意义。结论755nm皮秒激光联合纳晶微针导入氨甲环酸能有效治疗黄褐斑,安全性好,不良反应少。
文摘目的:探讨超皮秒激光联合透明质酸注射进行面部年轻化治疗的效果。方法:选择2021年1月-2022年6月在笔者医院要求进行面部年轻化治疗的就医者99例,按随机数字表法分为A组(n=33,单纯透明质酸治疗)、B组(n=33,单纯超皮秒激光治疗)、C组(n=33,超皮秒激光联合透明质酸治疗)。评价疗效,对比皮肤生理指标、皮肤屏障功能、不良反应。结果:治疗后,C组总有效率90.91%高于A组(69.70%)及B组(66.67%)(均P<0.05)。C组VISIA皮肤图像分析仪各项指标、经皮水分散失(Trans epidermal water loss,TEWL)、角质层含水量、表皮皮脂含量均较治疗前改善(P<0.05),且治疗后C组各指标改善均优于A组、B组(P<0.05)。三组不良反应总发生率差异均无统计学意义(P>0.05)。结论:超皮秒激光联合透明质酸注射用于面部年轻化疗效肯定,可改善皮肤生理指标、皮肤屏障功能,且未增加不良反应。