Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-...With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use.展开更多
In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreami...In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal o...Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.展开更多
A significant portion of emerging adults do not achieve recommended levels of physical activity (PA). Previous studies observedassociations between features of emerging adulthood and PA levels, while the potential psy...A significant portion of emerging adults do not achieve recommended levels of physical activity (PA). Previous studies observedassociations between features of emerging adulthood and PA levels, while the potential psychological mechanisms that mightexplain this phenomenon are not fully understood. In this context, there is some evidence that situated decisions towardphysical activity (SDPA) and exercise-intensity tolerance might influence PA level. To provide empirical support for thisassumption, the current study investigated whether (i) features of emerging adulthood are linked to SDPA, which, in turn,might affect PA engagement;(ii) exercise-intensity tolerance moderate the relationship between SDPA and PA level;and (iii)SDPA is a mediator of the relationship between features of emerging adulthood and PA levels under the prerequisite thatexercise-intensity tolerance moderates the link between SDPA and PA engagement. In this study a group of 1,706 Chinesecollege students was recruited and asked to complete a set of questionnaires assessing their SDPA, PA levels, exercise-intensitytolerance, and features associated with emerging adulthood, namely Self-exploration, Instability, and Possibility. Our resultsindicated that SDPA positively predicted PA levels and this relationship became stronger when exercise-intensity tolerance wasused as a moderator. Furthermore, it was observed that individuals with a higher level of Instability and a lower level ofPossibility during emerging adulthood exhibited a lower level of SDPA. Taken together, the results of our study providefurther insights on a potential psychological mechanism linking features of emerging adulthood and physical activity.展开更多
Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources c...Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on m...Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and ...By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and management indices to variety types, ecological environments and production levels were analysed and extracted, and a dynamic knowledge model with temporal and spatial characters for wheat management(WheatKnow)was developed. By adopting the soft component characteristics as non language relevance , re-utilization and portable system maintenance. and by further integrating the wheat growth simulation model(WheatGrow)and intelligent system for wheat management, a comprehensive and digital knowledge model, growth model and component-based decision support system for wheat management(MBDSSWM)was established on the platforms of Visual C++ and Visual Basic. The MBDSSWM realized the effective integration and coupling of the prediction and decision-making functions for digital crop management.展开更多
Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the l...Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.展开更多
As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modell...As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.展开更多
This study examines the impact of cash crop cultivation on household income and migration decisions,using survey data collected from low-income regions in China.Given farmers decide themselves whether to cultivate cas...This study examines the impact of cash crop cultivation on household income and migration decisions,using survey data collected from low-income regions in China.Given farmers decide themselves whether to cultivate cash crops,an endogenous treatment regression model that accounts for potential selection bias issue is used to analyze the data.The empirical results show that cash crop cultivation exerts a positive and statistically significant impact on household income,but it does not affect household migration decisions significantly.The disaggregated analyses reveal that cash crop cultivation significantly increases farm income but decreases off-farm income.展开更多
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use.
文摘In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
基金supported in part by the National Natural Science Foundation of China(12271146,12161036,61866011,11961025,61976120)the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)Discovery Grant from Natural Science and Engineering Research Council of Canada(NSERC)。
文摘Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.
基金supported by the University Malaya Community Campus Grant-RUU2022-LL016Private Grant PV086-2022(University Poly-Tech MARA-UPTM),Kuala LumpurUniversitas Negeri Malang,Indonesia.
文摘A significant portion of emerging adults do not achieve recommended levels of physical activity (PA). Previous studies observedassociations between features of emerging adulthood and PA levels, while the potential psychological mechanisms that mightexplain this phenomenon are not fully understood. In this context, there is some evidence that situated decisions towardphysical activity (SDPA) and exercise-intensity tolerance might influence PA level. To provide empirical support for thisassumption, the current study investigated whether (i) features of emerging adulthood are linked to SDPA, which, in turn,might affect PA engagement;(ii) exercise-intensity tolerance moderate the relationship between SDPA and PA level;and (iii)SDPA is a mediator of the relationship between features of emerging adulthood and PA levels under the prerequisite thatexercise-intensity tolerance moderates the link between SDPA and PA engagement. In this study a group of 1,706 Chinesecollege students was recruited and asked to complete a set of questionnaires assessing their SDPA, PA levels, exercise-intensitytolerance, and features associated with emerging adulthood, namely Self-exploration, Instability, and Possibility. Our resultsindicated that SDPA positively predicted PA levels and this relationship became stronger when exercise-intensity tolerance wasused as a moderator. Furthermore, it was observed that individuals with a higher level of Instability and a lower level ofPossibility during emerging adulthood exhibited a lower level of SDPA. Taken together, the results of our study providefurther insights on a potential psychological mechanism linking features of emerging adulthood and physical activity.
基金the Aeronautical Science Foundation of China(2017ZC53021)the Open Project Fund of CETC Key Laboratory of Data Link Technology(CLDL-20182101).
文摘Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
文摘Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
基金supported by the National Natural Science Foundation of China(30030090)the National 863 Program,China(2001AA115420,2001AA245041).
文摘By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and management indices to variety types, ecological environments and production levels were analysed and extracted, and a dynamic knowledge model with temporal and spatial characters for wheat management(WheatKnow)was developed. By adopting the soft component characteristics as non language relevance , re-utilization and portable system maintenance. and by further integrating the wheat growth simulation model(WheatGrow)and intelligent system for wheat management, a comprehensive and digital knowledge model, growth model and component-based decision support system for wheat management(MBDSSWM)was established on the platforms of Visual C++ and Visual Basic. The MBDSSWM realized the effective integration and coupling of the prediction and decision-making functions for digital crop management.
基金The National Natural Science Foundation of China(No.71171048,71371049)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0190)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1567)
文摘Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.
基金Supported by a grant from the German Federal Ministry of Education and Research,No.01EO1302
文摘As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.
基金Supported by the Humanities and Social Science Research Fund of the Ministry of Education of China(19YJC790063)the Natural Science Foundation of Fujian,China(2017J05112)the Social Science Foundation of Fujian,China(FJ2017C076).
文摘This study examines the impact of cash crop cultivation on household income and migration decisions,using survey data collected from low-income regions in China.Given farmers decide themselves whether to cultivate cash crops,an endogenous treatment regression model that accounts for potential selection bias issue is used to analyze the data.The empirical results show that cash crop cultivation exerts a positive and statistically significant impact on household income,but it does not affect household migration decisions significantly.The disaggregated analyses reveal that cash crop cultivation significantly increases farm income but decreases off-farm income.