Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way ...Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.展开更多
Three-way catalysts are widely used to control criterion pollutant emissions fromthe increasing gasoline engines.With the stringent requirements of automotivepollutant emission standards in various countries,Rh has be...Three-way catalysts are widely used to control criterion pollutant emissions fromthe increasing gasoline engines.With the stringent requirements of automotivepollutant emission standards in various countries,Rh has become an irreplaceablecomponent of three-way catalysts due to its superior NOx elimination,high N2selectivity,and simultaneous elimination of CO and hydrocarbons.In this review,we systematically review the recent development of Rh-based three-way catalystsin terms of potential supports and effective active center construction strategies.We further summarize the key role of Rh metal in the three-way catalytic mechanismand reaction kinetics.Finally,we conclude the current challenges and futureopportunities facing Rh-based catalysts.It is believed that based on the deep understandingof Rh-based three-way catalysts,the design of Rh-based catalysts withgood low-temperature catalytic performance and low cost is expected to be realizedin the future.展开更多
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
Direct shear test is one of the simplest and most economical tests to measure shear strength parameters of dry or saturated sandy soil as well as soil-geogrid interaction parameters.In the current study the effects of...Direct shear test is one of the simplest and most economical tests to measure shear strength parameters of dry or saturated sandy soil as well as soil-geogrid interaction parameters.In the current study the effects of specimen size and density on soil-geogrid interaction parameters employing shear boxes of 6×6 cm,10×10 cm and 30×30 cm have been investigated.Results show that increasing specimen size of unreinforced sand with constant density results in a decrease in angle of friction which has been attributed to reduced confinement effect using larger shear boxes.The rate of reduction in angle of friction is increased by increasing soil density and using geogrid as reinforcement.展开更多
In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was de...In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was designed. The EAGSAL consists of epoxy asphalt and fiberglass geogrid. The pull-out test, skewshearing test, bending beam test and fatigue test were conducted to evaluate the performance of the EAGSAL and a traditional stress-absorbing layer( TSAL). The results showthat the adhesive performance, shear performance, bending strength and fatigue performance of the EAGSAL with an optimal spraying volume of epoxy asphalt are better than those of optimally designed TSAL, and the maximum bending strain of the EAGSAL is very close to that of the TSAL. The EAGSAL has superior performance in reflective cracking resistance.Moreover, the EAGSAL with the optimal spraying volume of approximately 2. 0 L m^2 is thinner and lighter than the TSAL,which can decrease the thickness and improve the bearing ability of the whole pavement structure.展开更多
Railway ballast forms a major component of a conventional rail track and is used to distribute the load to the subgrade, providing a smooth running surface for trains. It plays a significant role in providing support ...Railway ballast forms a major component of a conventional rail track and is used to distribute the load to the subgrade, providing a smooth running surface for trains. It plays a significant role in providing support for the rail track base and distributing the load to the weaker layer underneath. Ballast also helps with drainage, which is an important factor for any type of transportation structure, including railroads. Over time, ballast progressively deforms and degrades under dynamic loading and loses its strength. In this study, extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on the behavior of the reinforced ballast layer and induced strains in a geogrid. A half full-scale railway was constructed for carrying out the tests, which consisted of two rails 800 mm in length with three wooden sleepers(900 mm × 10 mm × 10 mm). Three ballast thicknesses of 200, 300 and 400 mm were used in the tests. The ballast was overlying 500 mm thickness clay in two states, soft and stiff. The tests were carried out with and without geogrid reinforcement; the tests were performed in a well-tied steel box of 1.5 m length ×1 m width ×1 m height. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the amount of settlement increased as the simulated train load amplitude increased, and there was a sharp increase in settlement up to cycle 500. After that, there was a gradual increase that leveled out between, 2500 to 4500 cycles depending on the frequency used. There was a slight increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton but it was higher when the load amplitude increased to 2 tons. The increased amount in settlement depended on the existence of the geogrid and other parameters studied. The transmitted average vertical stress for ballast thicknesses of 30 cm and 40 cm increased as the load amplitude increased, regardless of the ballast reinforcement for both soft and stiff clay. The position of the geogrid had no significant effect on the transmitted stresses. The value of the soil pressure and pore water pressure on ballast thicknesses of 20 cm was higher than for 30 cm and 40 cm thicknesses. This meant that the ballast attenuated the induced waves. The soil pressure and pore water pressure for reinforced and unreinforced ballast was higher in stiff clay than in soft clay.展开更多
Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stabi...Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.展开更多
By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the ef...By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.展开更多
Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the l...Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.展开更多
Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources c...Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.展开更多
Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake.However,seismic damage mechanism of this kind of wall is not sufficiently clear.In view of this,a large shak...Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake.However,seismic damage mechanism of this kind of wall is not sufficiently clear.In view of this,a large shaking table test of the gravity retaining wall with geogrids to reinforce the subgrade slope was carried out,and based on the HilbertHuang transform and the marginal spectrum theory,the energy identification method of the slope dynamic failure mode was studied.The results show that the geogrids can effectively reduce displacement and rotation of the retaining wall,and it can effectively absorb the energy of the ground movement when combined with the surrounding soil.In addition,it also reveals the failure development of the gravity retaining wall with geogrids to reinforce the subgrade slope.The damage started in the deep zone near the geogrids,and then gradually extended to the surface of the subgrade slope and other zones,finally formed a continuous failure surface along the geogrids.The analysis results of the failure mode identified by the Hilbert marginal spectrum are in good consistency with the experimental results,which prove that the Hilbert marginal spectrum can be applied to obtain the seismic damage mechanism of slope.展开更多
Three-way pipes, T and Y pipes, are very important connecting components in pipeline systems, their strength are related to the safety of pipelines. In the case that crack is not detected in the three-way pipe, ANSYS ...Three-way pipes, T and Y pipes, are very important connecting components in pipeline systems, their strength are related to the safety of pipelines. In the case that crack is not detected in the three-way pipe, ANSYS finite element program version 5.6 is applied to study the stress distribution of the three-way pipe and to obtain the optimum fillet radius in the crotch region of the two pipes. The reasonable intersection angle of the two pipes is also obtained. In the case that a surface crack is detected in the three-way pipe, the maximum stress intensity factor (SIF) near the front of the surface crack is studied.展开更多
Oxygen storage-capacity (OSC), oxygen buffer capacity (OBC), X-my diffraction and electron diffraction pattern, high resolution electron microscopy were used to study the quaternary oxides, i .e., of Ce, Tb, Pr an...Oxygen storage-capacity (OSC), oxygen buffer capacity (OBC), X-my diffraction and electron diffraction pattern, high resolution electron microscopy were used to study the quaternary oxides, i .e., of Ce, Tb, Pr and Zr. (Ce0.6 Tb0.2Zr0.2O2- δ and Ce0.6Pr0.2Zr0.2O2-δ ). OSC and OBC data indicate that these oxides have very good oxygen transfer capacity (OTC) and their pseudo-solid solutions exhibit fluorite-type structure. These oxides may act as a good candidate for three-way catalysts (TWC).展开更多
A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo...A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo loading system.In all the tests,the amplitude of loading was±160 kPa;the frequency of loading was 2 Hz.To better ascertain the effect of reinforcement,an unreinforced square footing was first tested.This was followed by a series of tests,each with a single layer of reinforcement.The reinforcement was placed at depths of 0.3B,0.6B and 0.9B,where B is the width of footing.The optimal depth of reinforcement was found to be 0.6B.The effect of adopting this value versus the other two depths was quantified.The single layer of geogrid had an effective reinforcement depth of 1.7B below the footing base.The increase of the depth between the topmost geogrid layer and the bottom of the footing(within the range of 0.9B)did not change the failure mode of the foundation.展开更多
The durability of three-way catalyst (TWC) and corresponding close-coupled catalyst (CCC) for Euro Ⅳ stage regulation was investigated through Vehicle Road Running Mode tests, whereas emissions of regulated pollu...The durability of three-way catalyst (TWC) and corresponding close-coupled catalyst (CCC) for Euro Ⅳ stage regulation was investigated through Vehicle Road Running Mode tests, whereas emissions of regulated pollutants of three car fleet were investigated at every 100,000 km miles. The results showed that HC, NOx, and CO emission values could meet Euro Ⅳ regulation limits at every point. The redox properties of TWC and CCC were measured by CO reduction during each isothermal. It was obvious that both aged TWC and aged CCC behaved a good redox property at 673 and 773 K. Based on XRD and BET measurement results, TWC and CCC washcoat were characterized with good thermal stability.展开更多
The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interacti...The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.展开更多
Operating principle of water three-way valve with high flow for individual hydraulic prop in coal was presented in this paper, its strict and precise mathematical model was established, its flow field was simulated nu...Operating principle of water three-way valve with high flow for individual hydraulic prop in coal was presented in this paper, its strict and precise mathematical model was established, its flow field was simulated numerically by software Fluent, and its dynamic characteristics were analyzed during the work process such as raising leg, loading and overflow, the influence of the related parameters on high-flow water three-way valve was determined. The results as follows: during the raising leg stage and early raising leg stage, when the damping ratio increases, the overshoot of system decreases and the setting time reduces, and the dynamic response performance has a significant improvement. During the loading stage and the overflow stage, the pressure in plunger chamber of single hydraulic prop, the output flow and the displacement of the high-flow water three-way valve decrease with the decreasing of the external load. The spring stiffness of the safety valve directs the flow and the spool's displacement of the safety valve, and it can be used to control the high-flow three-way valve's sensitivity.展开更多
In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is a...In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.展开更多
The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soi...The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soil properties.The test results of the dynamic earth pressure indicate that the soil reinforced by geogrid is very effective to increase the stiffness of soil,especially in soft soil.The dynamic earth pressure ratio,which is defined as the ratio of dynamic earth pressure to self weight of soils,exponentially decreases as the embankment height increases.The dynamic earth pressure ratio increases up to 80% for soft soils reinforced by both one layer of geogrid in place of no reinforced soils and two layers in place of a single layer of geogrid.展开更多
Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal o...Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.展开更多
基金Central University Basic Research Fund of China,Grant/Award Number:FWNX04Ningxia Natural Science Foundation,Grant/Award Number:2021AAC03203National Natural Science Foundation of China,Grant/Award Number:61662001。
文摘Three-way concept analysis is an important tool for information processing,and rule acquisition is one of the research hotspots of three-way concept analysis.However,compared with three-way concept lattices,three-way semi-concept lattices have three-way operators with weaker constraints,which can generate more concepts.In this article,the problem of rule acquisition for three-way semi-concept lattices is discussed in general.The authors construct the finer relation of three-way semi-concept lattices,and propose a method of rule acquisition for three-way semi-concept lattices.The authors also discuss the set of decision rules and the relationships of decision rules among object-induced three-way semi-concept lattices,object-induced three-way concept lattices,classical concept lattices and semi-concept lattices.Finally,examples are provided to illustrate the validity of our conclusions.
基金supported by the financial aid from National Science and Technology Major Project of China(2021YFB3500700)National Natural Science Foundation of China(22020102003,22025506,22271274 and U23A20140)Program of Science and Technology Development Plan of Jilin Province of China(20230101035JC and 20230101022JC).
文摘Three-way catalysts are widely used to control criterion pollutant emissions fromthe increasing gasoline engines.With the stringent requirements of automotivepollutant emission standards in various countries,Rh has become an irreplaceablecomponent of three-way catalysts due to its superior NOx elimination,high N2selectivity,and simultaneous elimination of CO and hydrocarbons.In this review,we systematically review the recent development of Rh-based three-way catalystsin terms of potential supports and effective active center construction strategies.We further summarize the key role of Rh metal in the three-way catalytic mechanismand reaction kinetics.Finally,we conclude the current challenges and futureopportunities facing Rh-based catalysts.It is believed that based on the deep understandingof Rh-based three-way catalysts,the design of Rh-based catalysts withgood low-temperature catalytic performance and low cost is expected to be realizedin the future.
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
基金The kind co-operation and financial support provided by Islamic Azad University-Pardis Branch and K.N.Toosi University of Technology(Faculty of Civil Engineering)is gratefully appreciated.
文摘Direct shear test is one of the simplest and most economical tests to measure shear strength parameters of dry or saturated sandy soil as well as soil-geogrid interaction parameters.In the current study the effects of specimen size and density on soil-geogrid interaction parameters employing shear boxes of 6×6 cm,10×10 cm and 30×30 cm have been investigated.Results show that increasing specimen size of unreinforced sand with constant density results in a decrease in angle of friction which has been attributed to reduced confinement effect using larger shear boxes.The rate of reduction in angle of friction is increased by increasing soil density and using geogrid as reinforcement.
基金The National Natural Science Foundation of China(No.51178114,51378122)
文摘In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was designed. The EAGSAL consists of epoxy asphalt and fiberglass geogrid. The pull-out test, skewshearing test, bending beam test and fatigue test were conducted to evaluate the performance of the EAGSAL and a traditional stress-absorbing layer( TSAL). The results showthat the adhesive performance, shear performance, bending strength and fatigue performance of the EAGSAL with an optimal spraying volume of epoxy asphalt are better than those of optimally designed TSAL, and the maximum bending strain of the EAGSAL is very close to that of the TSAL. The EAGSAL has superior performance in reflective cracking resistance.Moreover, the EAGSAL with the optimal spraying volume of approximately 2. 0 L m^2 is thinner and lighter than the TSAL,which can decrease the thickness and improve the bearing ability of the whole pavement structure.
文摘Railway ballast forms a major component of a conventional rail track and is used to distribute the load to the subgrade, providing a smooth running surface for trains. It plays a significant role in providing support for the rail track base and distributing the load to the weaker layer underneath. Ballast also helps with drainage, which is an important factor for any type of transportation structure, including railroads. Over time, ballast progressively deforms and degrades under dynamic loading and loses its strength. In this study, extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on the behavior of the reinforced ballast layer and induced strains in a geogrid. A half full-scale railway was constructed for carrying out the tests, which consisted of two rails 800 mm in length with three wooden sleepers(900 mm × 10 mm × 10 mm). Three ballast thicknesses of 200, 300 and 400 mm were used in the tests. The ballast was overlying 500 mm thickness clay in two states, soft and stiff. The tests were carried out with and without geogrid reinforcement; the tests were performed in a well-tied steel box of 1.5 m length ×1 m width ×1 m height. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the amount of settlement increased as the simulated train load amplitude increased, and there was a sharp increase in settlement up to cycle 500. After that, there was a gradual increase that leveled out between, 2500 to 4500 cycles depending on the frequency used. There was a slight increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton but it was higher when the load amplitude increased to 2 tons. The increased amount in settlement depended on the existence of the geogrid and other parameters studied. The transmitted average vertical stress for ballast thicknesses of 30 cm and 40 cm increased as the load amplitude increased, regardless of the ballast reinforcement for both soft and stiff clay. The position of the geogrid had no significant effect on the transmitted stresses. The value of the soil pressure and pore water pressure on ballast thicknesses of 20 cm was higher than for 30 cm and 40 cm thicknesses. This meant that the ballast attenuated the induced waves. The soil pressure and pore water pressure for reinforced and unreinforced ballast was higher in stiff clay than in soft clay.
基金Funded by National Natural Science Foundation of China(No.41372289)the Shandong Province Higher Educational Science and Technology Program(No.12LH03)+1 种基金the China's Post-doctoral Science Fund(No.2012M521365)the SDUST Research Fund
文摘Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.
基金Funded by the National Natural Science Foundation of China(41372289)the Shandong Province Higher Educational Science and Technology Program(12LH03)+1 种基金the China's Post-doctoral Science Fund(2012M521365)the SDUST Research Fund
文摘By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.
基金The National Natural Science Foundation of China(No.71171048,71371049)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0190)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1567)
文摘Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.
基金the Aeronautical Science Foundation of China(2017ZC53021)the Open Project Fund of CETC Key Laboratory of Data Link Technology(CLDL-20182101).
文摘Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.
基金Supported by:Strategic International Science and Technology Innovation Cooperation Project from National Key R&D Program of China under Grant No.2018YFE0207100the National Natural Science Foundation of China under Grant No.41602332。
文摘Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake.However,seismic damage mechanism of this kind of wall is not sufficiently clear.In view of this,a large shaking table test of the gravity retaining wall with geogrids to reinforce the subgrade slope was carried out,and based on the HilbertHuang transform and the marginal spectrum theory,the energy identification method of the slope dynamic failure mode was studied.The results show that the geogrids can effectively reduce displacement and rotation of the retaining wall,and it can effectively absorb the energy of the ground movement when combined with the surrounding soil.In addition,it also reveals the failure development of the gravity retaining wall with geogrids to reinforce the subgrade slope.The damage started in the deep zone near the geogrids,and then gradually extended to the surface of the subgrade slope and other zones,finally formed a continuous failure surface along the geogrids.The analysis results of the failure mode identified by the Hilbert marginal spectrum are in good consistency with the experimental results,which prove that the Hilbert marginal spectrum can be applied to obtain the seismic damage mechanism of slope.
文摘Three-way pipes, T and Y pipes, are very important connecting components in pipeline systems, their strength are related to the safety of pipelines. In the case that crack is not detected in the three-way pipe, ANSYS finite element program version 5.6 is applied to study the stress distribution of the three-way pipe and to obtain the optimum fillet radius in the crotch region of the two pipes. The reasonable intersection angle of the two pipes is also obtained. In the case that a surface crack is detected in the three-way pipe, the maximum stress intensity factor (SIF) near the front of the surface crack is studied.
文摘Oxygen storage-capacity (OSC), oxygen buffer capacity (OBC), X-my diffraction and electron diffraction pattern, high resolution electron microscopy were used to study the quaternary oxides, i .e., of Ce, Tb, Pr and Zr. (Ce0.6 Tb0.2Zr0.2O2- δ and Ce0.6Pr0.2Zr0.2O2-δ ). OSC and OBC data indicate that these oxides have very good oxygen transfer capacity (OTC) and their pseudo-solid solutions exhibit fluorite-type structure. These oxides may act as a good candidate for three-way catalysts (TWC).
基金Projects(41962017,51469005)supported by the National Natural Science Foundation of ChinaProject(2017GXNSFAA198170)supported by the Natural Science Foundation in Guangxi Province,China+1 种基金Project supported by the Guangxi University of Science and Technology Innovation Team Support Plan,ChinaProject supported by the High Level Innovation Team and Outstanding Scholars Program of Guangxi Institutions of Higher Learning,China。
文摘A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo loading system.In all the tests,the amplitude of loading was±160 kPa;the frequency of loading was 2 Hz.To better ascertain the effect of reinforcement,an unreinforced square footing was first tested.This was followed by a series of tests,each with a single layer of reinforcement.The reinforcement was placed at depths of 0.3B,0.6B and 0.9B,where B is the width of footing.The optimal depth of reinforcement was found to be 0.6B.The effect of adopting this value versus the other two depths was quantified.The single layer of geogrid had an effective reinforcement depth of 1.7B below the footing base.The increase of the depth between the topmost geogrid layer and the bottom of the footing(within the range of 0.9B)did not change the failure mode of the foundation.
基金supported by the 863 Program (2006AA060305)China Postdoctoral Science Foundation (20070410196)+1 种基金Jiangsu Province Planned Projects for Postdoctoral Research Funds (0702054C)Jiangsu Province Natural Science Fund (BK2008532)
文摘The durability of three-way catalyst (TWC) and corresponding close-coupled catalyst (CCC) for Euro Ⅳ stage regulation was investigated through Vehicle Road Running Mode tests, whereas emissions of regulated pollutants of three car fleet were investigated at every 100,000 km miles. The results showed that HC, NOx, and CO emission values could meet Euro Ⅳ regulation limits at every point. The redox properties of TWC and CCC were measured by CO reduction during each isothermal. It was obvious that both aged TWC and aged CCC behaved a good redox property at 673 and 773 K. Based on XRD and BET measurement results, TWC and CCC washcoat were characterized with good thermal stability.
基金Supported by National Natural Science Foundation of China (No. 50678032)
文摘The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.
基金Supported by the National Natural Science Foundation of China (51075001) the Nature Science Research Project of Anhui Province (KJ2009A020)
文摘Operating principle of water three-way valve with high flow for individual hydraulic prop in coal was presented in this paper, its strict and precise mathematical model was established, its flow field was simulated numerically by software Fluent, and its dynamic characteristics were analyzed during the work process such as raising leg, loading and overflow, the influence of the related parameters on high-flow water three-way valve was determined. The results as follows: during the raising leg stage and early raising leg stage, when the damping ratio increases, the overshoot of system decreases and the setting time reduces, and the dynamic response performance has a significant improvement. During the loading stage and the overflow stage, the pressure in plunger chamber of single hydraulic prop, the output flow and the displacement of the high-flow water three-way valve decrease with the decreasing of the external load. The spring stiffness of the safety valve directs the flow and the spool's displacement of the safety valve, and it can be used to control the high-flow three-way valve's sensitivity.
基金supported in part by the National Natural Science Foundation of China under Grant 61201187by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110+2 种基金by the Tsinghua University Initiative Scientific Research Program under Grant 20121088074by the Foundation of Zhejiang Educational Committee under Grant Y201121579by the Visiting Scholar Professional Development Project of Zhejiang Educational Committee under Grant FX2014052
文摘In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.
文摘The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soil properties.The test results of the dynamic earth pressure indicate that the soil reinforced by geogrid is very effective to increase the stiffness of soil,especially in soft soil.The dynamic earth pressure ratio,which is defined as the ratio of dynamic earth pressure to self weight of soils,exponentially decreases as the embankment height increases.The dynamic earth pressure ratio increases up to 80% for soft soils reinforced by both one layer of geogrid in place of no reinforced soils and two layers in place of a single layer of geogrid.
基金supported in part by the National Natural Science Foundation of China(12271146,12161036,61866011,11961025,61976120)the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)Discovery Grant from Natural Science and Engineering Research Council of Canada(NSERC)。
文摘Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.