When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform...When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions.展开更多
In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power s...In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power system.However,the nonlinear characteristics of the power grids introduced by the transformer saturation considerably limit the application of the conventional analysis methods.To address the issue,this paper derives a linear model for the transformer saturation caused by the DC current due to the converter modulation.Afterwards,the nonlinear characteristics of power grids with the transformer saturation is described by a complex valued impedance matrix.Based on the derived impedance matrix,the system harmonic stability is analyzed and the mechanism of the transformer saturation induced harmonic instability is revealed.Finally,the sensitivity analysis is conducted to find the key factors that influence the system core saturation instability.The proposed impedance model is verified by the electromagnetic transient simulation,and the simulation results corroborate the effectiveness of the proposed impedance model.Index TermsLine commutated converter based high voltage direct current(LCC-HVDC),transformer saturation,harmonic instability,impedance model.展开更多
We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology fo...We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.展开更多
基金financial supported by the Natural Science Foundation of Fujian,China(2021J01633).
文摘When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions.
文摘In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power system.However,the nonlinear characteristics of the power grids introduced by the transformer saturation considerably limit the application of the conventional analysis methods.To address the issue,this paper derives a linear model for the transformer saturation caused by the DC current due to the converter modulation.Afterwards,the nonlinear characteristics of power grids with the transformer saturation is described by a complex valued impedance matrix.Based on the derived impedance matrix,the system harmonic stability is analyzed and the mechanism of the transformer saturation induced harmonic instability is revealed.Finally,the sensitivity analysis is conducted to find the key factors that influence the system core saturation instability.The proposed impedance model is verified by the electromagnetic transient simulation,and the simulation results corroborate the effectiveness of the proposed impedance model.Index TermsLine commutated converter based high voltage direct current(LCC-HVDC),transformer saturation,harmonic instability,impedance model.
文摘We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.