The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulati...The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry.展开更多
The Qinghai-Tibet Plateau is the word's highest and largest plateau. Due to increasing demands for environment exploration and tourism, a large transitional area is required for altitude adaptation. Hehuang valley, w...The Qinghai-Tibet Plateau is the word's highest and largest plateau. Due to increasing demands for environment exploration and tourism, a large transitional area is required for altitude adaptation. Hehuang valley, which locates in the transition zone between the Loess Plateau and the Qinghai-Tibet Plateau, has convenient transportation and relatively low elevation. Our question is whether the geographic conditions here are appropriate for adapted stay before going into the Qinghai-Tibet Plateau. Therefore, in this study, we examined the potential use of ecological niche modeling (ENM) for mapping current and potential distribution patterns of human settlements. We chose the Maximum Entropy Method (Maxent), an ENM which integrates climate, remote sensing and geographical data, to model distributions and assess land suitability for transition areas. After preprocessing and selection, the correlation between variables and spatial auto- correlation input data were removed and 106 occurrence points and 9 environmental layers were determined as the model inputs. The threshold- independent model performance was reasonable according to lO times model running, with the area under the curve (AUC) values being 0.917± 0.01, and 0.923±0.002 for test data. Cohen's kappa coefficient of model performance was 0.848. Results showed that 82.22% of the study extent was not suitable for human settlement. Of the remaining areas, highly suitable areas aceounted for 1.19%, moderately for 5.3% and marginally for 11.28%. These suitable areas totaled 418.79 km2, and 86.25% of the sample data was identified in the different gradient of suitable area.The decisive environmental factors were slope and two climate variables: mean diurnal temperature range and temperature seasonality. Our model showed a good performance in mapping and assessing human settlements. This study provides the first predicted potential habitat distribution map for human settlement in Ledu County, which could also help in land use management.展开更多
The binding of drugs with human serum albumin(HSA) is a crucial factor influencing the distribution and bioactivity of drugs in the body.To understand the action mechanisms between gallic acid(GA,3,4,5-trihydroxybe...The binding of drugs with human serum albumin(HSA) is a crucial factor influencing the distribution and bioactivity of drugs in the body.To understand the action mechanisms between gallic acid(GA,3,4,5-trihydroxybenzoic acid) and HSA,the binding of GA with HSA was investigated by a combined experimental and computational approach.The fluorescence properties of HSA and the binding parameters of GA collectively indicate that the binding is characterized by static quenching mechanism at one high affinity binding site.According to the estimated molecular distance between the donor(HSA) and the acceptor(GA),the binding is related to the fluorescence resonance energy transfer.As indicated by the thermodynamic parameters,hydrophobic interaction plays a major role in the GA-HSA complex.Further,the experimental results reveal that GA is bound in the large hydrophobic cavity of subdomain IIA in the site I of HSA,which is well approved by molecular docking.展开更多
A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with bl...A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian- Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distri- butions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human tho- rax were obtained from the finite element model, and were then applied in the mathematical model as the boundary con- ditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axels- son's model.展开更多
Neuroscience and neurology research is dominated by experimentation with rodents.Around 75%of neurology disease-associated genes have orthologs in Drosophila mel-anogaster,the fruit fly amenable to complex neurologica...Neuroscience and neurology research is dominated by experimentation with rodents.Around 75%of neurology disease-associated genes have orthologs in Drosophila mel-anogaster,the fruit fly amenable to complex neurological and behavioral investiga-tions.However,non-vertebrate models including Drosophila have so far been unable to significantly replace mice and rats in this field of studies.One reason for this situ-ation is the predominance of gene overexpression(and gene loss-of-function)meth-odologies used when establishing a Drosophila model of a given neurological disease,a strategy that does not recapitulate accurately enough the genetic disease condi-tions.I argue here the need for a systematic humanization approach,whereby the Drosophila orthologs of human disease genes are replaced with the human sequences.This approach will identify the list of diseases and the underlying genes that can be adequately modeled in the fruit fly.I discuss the neurological disease genes to which this systematic humanization approach should be applied and provide an example of such an application,and consider its importance for subsequent disease modeling and drug discovery in Drosophila.I argue that this paradigm will not only advance our un-derstanding of the molecular etiology of a number of neurological disorders,but will also gradually enable researchers to reduce experimentation using rodent models of multiple neurological diseases and eventually replace these models.展开更多
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, howev- er, are expensive, limiting the availability of 3D body models. In this paper, we focus on the hu...The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, howev- er, are expensive, limiting the availability of 3D body models. In this paper, we focus on the human body 3D modeling using one Kinect sensor modeling method. To get the human body model fast, three steps in rapid modeling of the human body are carried out. Firstly, according to anthropometric parameters, the standard model is parameterized; Secondly, the Kinect depth image of the human body model is gotten through, then, by using the PCL library the point cloud data is processed and matched, and the human body model is optimized; Finally, the realistic human body model is obtained with the rapid integration of the standard model and PCL library.展开更多
The interactions of electromagnetic waves with the human body are complex and depend on several factors related to the characteristics of the incident wave, including its frequency, its intensity, the polarization of ...The interactions of electromagnetic waves with the human body are complex and depend on several factors related to the characteristics of the incident wave, including its frequency, its intensity, the polarization of the tissue encountered, the geometry of the tissue and its electromagnetic properties. That’s to say, the dielectric permittivity, the conductivity and the type of coupling between the field and the exposed body. A biological system irradiated by an electromagnetic wave is traversed by induced currents of non-negligible density;the water molecules present in the biological tissues exposed to the electromagnetic field will begin to oscillate at the frequency of the incident wave, thus creating internal friction responsible for the heating of the irradiated tissues. This heating will be all the more important as the tissues are rich in water. This article presents the establishment from a mathematical and numerical analysis explaining the phenomena of interaction and consequences between electromagnetic waves and health. Since the total electric field in the biological system is unknown, that is why it can be determined by the Finite Difference Time Domain FDTD method to assess the electromagnetic power distribution in the biological system under study. For this purpose, the detailed on the mechanisms of interaction of microwave electromagnetic waves with the human body have been presented. Mathematical analysis using Maxwell’s equations as well as bio-heat equations is the basis of this study for a consistent result. Therefore, a thermal model of biological tissues based on an electrical analogy has been developed. By the principle of duality, an electrical model in the dielectric form of a multilayered human tissue was used in order to obtain a corresponding thermal model. This thermal model made it possible to evaluate the temperature profile of biological tissues during exposure to electromagnetic waves. The simulation results obtained from computer tools show that the temperature in the biological tissue is a linear function of the duration of exposure to microwave electromagnetic waves.展开更多
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene...Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.展开更多
The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associati...The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associations. We applied the variance-based partial least squares SEM(PLS-SEM) and geographically-weighted regression(GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass(AGB). The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia, China. Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction. The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure. The alleviation may be attributable to vegetation adaptation to high human-climate stresses, to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas. Furthermore, the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations. This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems.展开更多
The relation between the HRM and the firm performance is analyzed statistically by many researchers in the literature. However, there are very few nonlinear approaches in literature for finding the relation between Hu...The relation between the HRM and the firm performance is analyzed statistically by many researchers in the literature. However, there are very few nonlinear approaches in literature for finding the relation between Human Resource Management (FIRM) and firm performance. This paper exposes the relationship between human resource management and organizational performance through the use of nonlinear modeling technique. The modeling is proposed based on Radial Basis Function (RBF) which is nonlinear modeling technique in literature. The relation between 12 input and 9 output parameters is investigated in this research that is collected between 54 companies in Turkey which indicated that the relationship between organizational management performance and relationship management can be modelled through nonlinearly.展开更多
This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used...This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc.展开更多
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b...This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,w...Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,which was strongly demanded by medical or rehabilitation scenarios.Prior to a high-accuracy modeling of human legs based on non-uniform rational B-splines(NURBS),the method of extracting the required quasi-grid network of feature points for human legs is presented in this work.Given the 3 D scanned human body,the leg is firstly segmented and put in standardized position.Then re-sampling of the leg is conducted via a set of equidistant cross sections.Through analysis of leg circumferences and circumferential curvature,the characteristic sections of the leg as well as the characteristic points on the sections are then identified according to the human anatomy and shape features.The obtained collection can be arranged to form a grid of data points for knots calculation and high-accuracy shape reconstruction in future work.展开更多
With the continuous development of human civilization, modem design has also made great progress. The design thinking tends more to adapting to human self-demand, in order to achieve the purpose of serving for people...With the continuous development of human civilization, modem design has also made great progress. The design thinking tends more to adapting to human self-demand, in order to achieve the purpose of serving for people' s daily life. Therefore, the humanized design concept of modem society is proposed, and in many fields, the humanized design thinking has become mature. This paper mainly takes systematic and overall analysis of the application of humanized design thinking in ceramic modeling, in order to provide relevant reference for the majority of peers.展开更多
In recent years,humanized immune system(HIS)mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields,better mimicking ...In recent years,humanized immune system(HIS)mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields,better mimicking the human immune system and the tumor immune microenvironment,compared to traditional immunodeficient mice.To better promote the application of HIS mice in preclinical research,we se-lectively summarize the current prevalent and breakthrough research and evaluation of chimeric antigen receptor(CAR)-T cells in various antiviral and antitumor treat-ments.By exploring its application in preclinical research,we find that it can better reflect the actual clinical patient condition,with the advantages of providing high-efficiency detection indicators,even for progressive research and development.We believe that it has better clinical patient simulation and promotion for the updated design of CAR-T cell therapy than directly transplanted immunodeficient mice.The characteristics of the main models are proposed to improve the use defects of the existing models by reducing the limitation of antihost reaction,combining multiple models,and unifying sources and organoid substitution.Strategy study of relapse and toxicity after CAR-T treatment also provides more possibilities for application and development.展开更多
Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encodi...Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.展开更多
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic...The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.72071179)ZJU-Sunon Joint Research Center of Smart Furniture,Zhejiang University,China.
文摘The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry.
基金supported by the Natural Science Foundation of China (Grant No. 41171330)National High Technology Research and Development Program of China (863 Program)(Grant No. 2013AA12A302)the Special Foundation for Free Exploration of State Laboratory of Remote Sensing Science (Grant No.Y1Y00245KZ)
文摘The Qinghai-Tibet Plateau is the word's highest and largest plateau. Due to increasing demands for environment exploration and tourism, a large transitional area is required for altitude adaptation. Hehuang valley, which locates in the transition zone between the Loess Plateau and the Qinghai-Tibet Plateau, has convenient transportation and relatively low elevation. Our question is whether the geographic conditions here are appropriate for adapted stay before going into the Qinghai-Tibet Plateau. Therefore, in this study, we examined the potential use of ecological niche modeling (ENM) for mapping current and potential distribution patterns of human settlements. We chose the Maximum Entropy Method (Maxent), an ENM which integrates climate, remote sensing and geographical data, to model distributions and assess land suitability for transition areas. After preprocessing and selection, the correlation between variables and spatial auto- correlation input data were removed and 106 occurrence points and 9 environmental layers were determined as the model inputs. The threshold- independent model performance was reasonable according to lO times model running, with the area under the curve (AUC) values being 0.917± 0.01, and 0.923±0.002 for test data. Cohen's kappa coefficient of model performance was 0.848. Results showed that 82.22% of the study extent was not suitable for human settlement. Of the remaining areas, highly suitable areas aceounted for 1.19%, moderately for 5.3% and marginally for 11.28%. These suitable areas totaled 418.79 km2, and 86.25% of the sample data was identified in the different gradient of suitable area.The decisive environmental factors were slope and two climate variables: mean diurnal temperature range and temperature seasonality. Our model showed a good performance in mapping and assessing human settlements. This study provides the first predicted potential habitat distribution map for human settlement in Ledu County, which could also help in land use management.
基金Supported by the Project of Department of Science and Technology of Jilin Province,China(No.20070424)
文摘The binding of drugs with human serum albumin(HSA) is a crucial factor influencing the distribution and bioactivity of drugs in the body.To understand the action mechanisms between gallic acid(GA,3,4,5-trihydroxybenzoic acid) and HSA,the binding of GA with HSA was investigated by a combined experimental and computational approach.The fluorescence properties of HSA and the binding parameters of GA collectively indicate that the binding is characterized by static quenching mechanism at one high affinity binding site.According to the estimated molecular distance between the donor(HSA) and the acceptor(GA),the binding is related to the fluorescence resonance energy transfer.As indicated by the thermodynamic parameters,hydrophobic interaction plays a major role in the GA-HSA complex.Further,the experimental results reveal that GA is bound in the large hydrophobic cavity of subdomain IIA in the site I of HSA,which is well approved by molecular docking.
文摘A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian- Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distri- butions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human tho- rax were obtained from the finite element model, and were then applied in the mathematical model as the boundary con- ditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axels- son's model.
基金This work was supported by Swiss National Science Foundation,grant#31003A_175658 to VLK.
文摘Neuroscience and neurology research is dominated by experimentation with rodents.Around 75%of neurology disease-associated genes have orthologs in Drosophila mel-anogaster,the fruit fly amenable to complex neurological and behavioral investiga-tions.However,non-vertebrate models including Drosophila have so far been unable to significantly replace mice and rats in this field of studies.One reason for this situ-ation is the predominance of gene overexpression(and gene loss-of-function)meth-odologies used when establishing a Drosophila model of a given neurological disease,a strategy that does not recapitulate accurately enough the genetic disease condi-tions.I argue here the need for a systematic humanization approach,whereby the Drosophila orthologs of human disease genes are replaced with the human sequences.This approach will identify the list of diseases and the underlying genes that can be adequately modeled in the fruit fly.I discuss the neurological disease genes to which this systematic humanization approach should be applied and provide an example of such an application,and consider its importance for subsequent disease modeling and drug discovery in Drosophila.I argue that this paradigm will not only advance our un-derstanding of the molecular etiology of a number of neurological disorders,but will also gradually enable researchers to reduce experimentation using rodent models of multiple neurological diseases and eventually replace these models.
基金Supported by MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.13YJC890027)the National Natural Science Foundations of China(No.61003173)+1 种基金the Fundamental Research Funds for the Central Universities(No.2012ZZ0063)the Science and Technology Project of Guangzhou City(No.2012J4100002)
文摘The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, howev- er, are expensive, limiting the availability of 3D body models. In this paper, we focus on the human body 3D modeling using one Kinect sensor modeling method. To get the human body model fast, three steps in rapid modeling of the human body are carried out. Firstly, according to anthropometric parameters, the standard model is parameterized; Secondly, the Kinect depth image of the human body model is gotten through, then, by using the PCL library the point cloud data is processed and matched, and the human body model is optimized; Finally, the realistic human body model is obtained with the rapid integration of the standard model and PCL library.
文摘The interactions of electromagnetic waves with the human body are complex and depend on several factors related to the characteristics of the incident wave, including its frequency, its intensity, the polarization of the tissue encountered, the geometry of the tissue and its electromagnetic properties. That’s to say, the dielectric permittivity, the conductivity and the type of coupling between the field and the exposed body. A biological system irradiated by an electromagnetic wave is traversed by induced currents of non-negligible density;the water molecules present in the biological tissues exposed to the electromagnetic field will begin to oscillate at the frequency of the incident wave, thus creating internal friction responsible for the heating of the irradiated tissues. This heating will be all the more important as the tissues are rich in water. This article presents the establishment from a mathematical and numerical analysis explaining the phenomena of interaction and consequences between electromagnetic waves and health. Since the total electric field in the biological system is unknown, that is why it can be determined by the Finite Difference Time Domain FDTD method to assess the electromagnetic power distribution in the biological system under study. For this purpose, the detailed on the mechanisms of interaction of microwave electromagnetic waves with the human body have been presented. Mathematical analysis using Maxwell’s equations as well as bio-heat equations is the basis of this study for a consistent result. Therefore, a thermal model of biological tissues based on an electrical analogy has been developed. By the principle of duality, an electrical model in the dielectric form of a multilayered human tissue was used in order to obtain a corresponding thermal model. This thermal model made it possible to evaluate the temperature profile of biological tissues during exposure to electromagnetic waves. The simulation results obtained from computer tools show that the temperature in the biological tissue is a linear function of the duration of exposure to microwave electromagnetic waves.
基金supported by National Natural Science Foundation of China(61104085,51505213)Natural Science Foundation of Jiangsu Province(BK20151463,BK20130744)+2 种基金Innovation Foundation of NJIT(CKJA201409,CKJB201209)sponsored by Jiangsu Qing Lan ProjectJiangsu Government Scholarship for Overseas Studies(JS-2012-051)
基金the National Natural Science Foundation of China,No.82360148Guizhou Science&Technology Department,No.QKHPTRC2018-5636-2 and No.QKHPTRC2020-2201.
文摘Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.
基金supported by the National Natural Science Foundation of China (41371371)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050402)
文摘The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associations. We applied the variance-based partial least squares SEM(PLS-SEM) and geographically-weighted regression(GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass(AGB). The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia, China. Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction. The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure. The alleviation may be attributable to vegetation adaptation to high human-climate stresses, to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas. Furthermore, the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations. This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems.
文摘The relation between the HRM and the firm performance is analyzed statistically by many researchers in the literature. However, there are very few nonlinear approaches in literature for finding the relation between Human Resource Management (FIRM) and firm performance. This paper exposes the relationship between human resource management and organizational performance through the use of nonlinear modeling technique. The modeling is proposed based on Radial Basis Function (RBF) which is nonlinear modeling technique in literature. The relation between 12 input and 9 output parameters is investigated in this research that is collected between 54 companies in Turkey which indicated that the relationship between organizational management performance and relationship management can be modelled through nonlinearly.
基金This work was funded by the Science & Technology Development Fund of Shanghai, China( No. 005111081)
文摘This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc.
文摘This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
基金National Natural Science Foundation of China(Nos.12002085 and 51603039)Shanghai Pujiang Program,China(No.19PC002)+1 种基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-58)Initial Research Funds for Young Teachers of Donghua University,China(No.104-07-0053088)。
文摘Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,which was strongly demanded by medical or rehabilitation scenarios.Prior to a high-accuracy modeling of human legs based on non-uniform rational B-splines(NURBS),the method of extracting the required quasi-grid network of feature points for human legs is presented in this work.Given the 3 D scanned human body,the leg is firstly segmented and put in standardized position.Then re-sampling of the leg is conducted via a set of equidistant cross sections.Through analysis of leg circumferences and circumferential curvature,the characteristic sections of the leg as well as the characteristic points on the sections are then identified according to the human anatomy and shape features.The obtained collection can be arranged to form a grid of data points for knots calculation and high-accuracy shape reconstruction in future work.
文摘With the continuous development of human civilization, modem design has also made great progress. The design thinking tends more to adapting to human self-demand, in order to achieve the purpose of serving for people' s daily life. Therefore, the humanized design concept of modem society is proposed, and in many fields, the humanized design thinking has become mature. This paper mainly takes systematic and overall analysis of the application of humanized design thinking in ceramic modeling, in order to provide relevant reference for the majority of peers.
基金CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2021-I2M-1-035National Key Research and Development Project,Grant/Award Number:2022YFA1103803。
文摘In recent years,humanized immune system(HIS)mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields,better mimicking the human immune system and the tumor immune microenvironment,compared to traditional immunodeficient mice.To better promote the application of HIS mice in preclinical research,we se-lectively summarize the current prevalent and breakthrough research and evaluation of chimeric antigen receptor(CAR)-T cells in various antiviral and antitumor treat-ments.By exploring its application in preclinical research,we find that it can better reflect the actual clinical patient condition,with the advantages of providing high-efficiency detection indicators,even for progressive research and development.We believe that it has better clinical patient simulation and promotion for the updated design of CAR-T cell therapy than directly transplanted immunodeficient mice.The characteristics of the main models are proposed to improve the use defects of the existing models by reducing the limitation of antihost reaction,combining multiple models,and unifying sources and organoid substitution.Strategy study of relapse and toxicity after CAR-T treatment also provides more possibilities for application and development.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2301403 and 2022YFF0711000。
文摘Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Natural Science Foundation of China (41602205, 42293261)the China Geological Survey Program (DD20189506, DD20211301)+2 种基金the Special Investigation Project on Science and Technology Basic Resources of the Ministry of Science and Technology (2021FY101003)the Central Guidance for Local Scientific and Technological Development Fund of 2023the Project of Hebei University of Environmental Engineering (GCY202301)
文摘The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.