The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of ...The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions:(i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value;(ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity.The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules.展开更多
A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatu...A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus.A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength being resistant to the superposed voltage.A surface charge accumulation simulation model is introduced,and the key parameters in the simulation model are measured.In addition,an experimental platform for a 100 kV spacer flashover test is established.Spacer flashover tests under superimposed voltage with opposing polarities are carried out,and the withstanding voltage of the spacer is obtained.Finally,based on the proposed model,the threshold of the surface electric field strength(tangential component)on the DC spacer in SF_(6)/N_(2) mixed gases is discussed.For a reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF_(6)/N_(2),the threshold of surface electric field strength on the DC spacer is 12 kV/mm.The insulation design rule can be referenced in the design of a high-voltage DC SF_(6)/N_(2)-filled GIS/GIL apparatus.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61378083)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110 and2013SZS03-Z01)
文摘The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions:(i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value;(ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity.The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules.
基金supported in part by the National Basic Research Program of China(973 Program)(2014CB239500)Young Elite Scientists Sponsorship Program by CAST YESS20160004the Fundamental Research Funds for the Central Universities(2019MS006).
文摘A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus.A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength being resistant to the superposed voltage.A surface charge accumulation simulation model is introduced,and the key parameters in the simulation model are measured.In addition,an experimental platform for a 100 kV spacer flashover test is established.Spacer flashover tests under superimposed voltage with opposing polarities are carried out,and the withstanding voltage of the spacer is obtained.Finally,based on the proposed model,the threshold of the surface electric field strength(tangential component)on the DC spacer in SF_(6)/N_(2) mixed gases is discussed.For a reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF_(6)/N_(2),the threshold of surface electric field strength on the DC spacer is 12 kV/mm.The insulation design rule can be referenced in the design of a high-voltage DC SF_(6)/N_(2)-filled GIS/GIL apparatus.