期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
特征滞后计算的股市波动预测 被引量:1
1
作者 姚宏亮 李大光 李俊照 《计算机应用》 CSCD 北大核心 2015年第7期2077-2082,共6页
针对股票价格波动拐点难以有效预测导致预测精度不高的问题,提出一种特征滞后程度计算的均值门限广义自回归条件异方差(LRD-TGARCH-M)模型。首先,基于股价波动与指标变化出现的不一致性,给出了滞后性的定义,并引入能量波动概念,从能量... 针对股票价格波动拐点难以有效预测导致预测精度不高的问题,提出一种特征滞后程度计算的均值门限广义自回归条件异方差(LRD-TGARCH-M)模型。首先,基于股价波动与指标变化出现的不一致性,给出了滞后性的定义,并引入能量波动概念,从能量角度提出特征滞后程度(LD)计算模型;然后,用LD度量拐点出现之前的风险大小,将其加入到股价均值方程中,克服均值门限广义自回归条件异方差(TGARCH-M)模型对拐点预测的不足;其次,根据拐点附近波动相对剧烈,将LD加入到误差项的方差方程中,优化方差的变化,提高模型的预测精度;最后,给出了LRD-TGARCH-M模型的波动预测公式和精度分析,并在股票数据上进行实验,结果表明,与TGARCH-M模型相比,精确度提高了3.76%;与均值指数GARCH(EGARCH-M)模型相比,精确度提高了3.44%,证明了LRD-TGARCHM模型可以提高股价走势预测精度,减小误差。 展开更多
关键词 股价波动 特征滞后 能量性 波动风险 门限广义自回归条件异方差模型
下载PDF
基于多尺度分解集成组合模型的碳价格预测研究 被引量:5
2
作者 王喜平 于一丁 《分布式能源》 2022年第1期1-11,共11页
准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成... 准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)算法对碳价原始序列进行分解,并以综合贡献度指数(comprehensive contribution index,CCI)对分量进行重构,得到短期、长期和趋势分量;然后,采用门限广义自回归条件异方差(threshold generalized auto-regressive conditional heteroscedasticity,TGARCH)模型预测短期分量,以布谷鸟搜索(cuckoo search,CS)算法优化超参数的长短期记忆(long-short term memory,LSTM)神经网络预测长期和趋势分量;在此基础上,采用非线性集成算法对各分量预测结果进行集成,得到最终的碳价预测结果。以湖北碳市场为样本数据进行实证分析,结果表明所构建的预测模型性能最优,预测结果更准确,可为监管部门和企业决策提供有效信息。 展开更多
关键词 碳价格预测 长短期记忆(LSTM)模型 门限广义自回归条件异方差(tgarch)模型 改进型自适应白噪声完备集成经验模态(ICEEMDAN)分解 超参数优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部