On the ground of wharf and a station where coal is piled up, the sources polluting the atmosphere are mainly the raised coal dust. According to the principle of mechanics, with the consideration of the gravities of co...On the ground of wharf and a station where coal is piled up, the sources polluting the atmosphere are mainly the raised coal dust. According to the principle of mechanics, with the consideration of the gravities of coal dust particles and liquid droplets, coal dust size and humidity, under the condition of force balance when the coal dust was raised, the authors obtaineda theoretical formula for the threshold velocity of coal dust with humidity,Finally, the theoretical values from the formula gave a good agreement with the experimental data from some wind tunnels.展开更多
Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine ...Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter(PM)with an aerodynamic diameter of 10μm or less(PM10)according to the air quality standards.However,little is known about the threshold friction velocity(TFV)for particles of different sizes that comprise these soils.In this study,soil samples of two representative soil types(Warden sandy loam and Ritzville silt loam)collected from the Columbia Plateau were sieved to seven particle size fractions,and an experiment was then conducted to determine the relationship between TFV and particle size fraction.The results revealed that soil particle size significantly affected the initiation of soil movement and TFV;TFV ranged 0.304-0.844 and 0.249-0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam,respectively.PM10 and total suspended particulates(TSP)emissions from a bed of 63-90μm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam.Together with the lower TFV of Warden sandy loam,dust emissions from fine particles(<100μm in diameter)of Warden sandy loam thus may be a main contributor to dust in the region's atmosphere,since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau.Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau.展开更多
To quantize the difficulty level of dust production on the surface of different types of farmland,the Marticorena threshold frictional velocity pattern was used in this study to simulate the dust threshold frictional ...To quantize the difficulty level of dust production on the surface of different types of farmland,the Marticorena threshold frictional velocity pattern was used in this study to simulate the dust threshold frictional velocity.The results showed that the dust threshold frictional velocity of desertification farmland was 7.39cm/s,while it was 29.05 cm/s after the wheat harvested and the farmland ploughed; the turning green period was 46.85 cm/s; shooting period was 98.93 cm/s,the uncovered and the establishment period of fruit tree farmland was 26.0 and 139.15 cm/s.It was concluded that,bare desertification farmland could be changed into source of dust release easier.展开更多
Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands.Stony deserts are widely distributed in the Gobi Desert,but the effect of stones on wind erosion an...Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands.Stony deserts are widely distributed in the Gobi Desert,but the effect of stones on wind erosion and dust emission have not been well studied,except under artificial conditions.In this study,we evaluated the effect of stones on wind erosion and dust emission by measuring the sand saltation threshold in a stony desert in Tsogt-Ovoo in the Gobi Desert,Mongolia,under natural surface conditions during sand and dust storms.We quantified the amount of stones by measuring the roughness density,and determined the threshold friction velocity for sand saltation by measuring wind speed and sand saltation count.Our results showed that the threshold friction velocity increased with the roughness density of stones.In the northern part of the study area,where neither a surface crust nor vegetation was observed,the roughness density of stones was 0.000 in a topographic depression(TD),0.050 on a northern slope(N.SL),and 0.160 on the northern mountain(N.MT).The mean threshold friction velocity values were 0.23,0.41,and 0.57 m/s at the TD,N.SL,and N.MT sites,respectively.In the southern part of the study area,the roughness density values of stones were 0.000 and 0.070-0.320 at the TD and southern slope sites,respectively,and the mean threshold friction velocities were 0.23 and 0.45-0.71 m/s,respectively.We further compared the observed threshold friction velocities with simulated threshold friction velocities using Raupach's theoretical roughness correction and the measured roughness density values,and found that Raupach's roughness correction worked very well in the simulation of threshold friction velocity in the stony desert.This means that the results of our stone measurement can be applied to a numerical dust model.展开更多
Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also b...Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also be used for explosion, intrinsic, and fire safety. Every destructible material can be considered as either ductile or brittle in terms of its fracture mechanics. Thus, there is a need for a method to predict the efficiency of cutting with AWJs that is highly accurate irrespective of material. This problem can be solved using the energy conservation approach, which states the proportionality between the material removal volume and the kinetic energy of AWJs. This paper describes a method based on this approach, along with recommendations on reaching the most effective level of destruction. Recommendations are provided regarding rational ranges of values for the relation of abrasive flow rate to water flow rate, standoff distance, and size of abrasive particles. I also provide a parameter to establish the threshold conditions for a material's destruction initiation based on the temporary-structural approach of fracture mechanics.展开更多
Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for la...Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.展开更多
Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer rese...Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.展开更多
The ability to perceive motion is a fundamental property of the visual system,and one of its most basic aspects is the ability to discriminate moving objects from motionless ones,for example,motion detection.Velocity ...The ability to perceive motion is a fundamental property of the visual system,and one of its most basic aspects is the ability to discriminate moving objects from motionless ones,for example,motion detection.Velocity thresholds represent the minimum rate of displacement over time unit that an animal is able to perceive as movement,any slower motion being not discriminable from a still object.Although such topic has grabbed the attention of scientists already at the beginning of the 20th century,the interest has waned in time,and velocity thresholds have thus far been assessed in only a handful of species.展开更多
Sand transport by wind plays an important role in environmental problems.Formulating the sand-transport rate model has been of continuing significance,because the majority of the existing models relate sand-transport ...Sand transport by wind plays an important role in environmental problems.Formulating the sand-transport rate model has been of continuing significance,because the majority of the existing models relate sand-transport rate to the wind-shear velocity.However,the wind-shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs,especially at high wind velocity.Detailed wind tunnel tests were carried out to reformulate the sand-transport rate model,followed by attempts to relate sand-transport rate to parameters of wind velocity,threshold shear-velocity,and grain size.Finally,we validated the model based on the data from field observations.展开更多
The emission of dust particles into the atmosphere is governed by the aerodynamic and resistant factors, which are quantified by the friction velocity u. and the threshold friction velocity u*t, respectively. The thr...The emission of dust particles into the atmosphere is governed by the aerodynamic and resistant factors, which are quantified by the friction velocity u. and the threshold friction velocity u*t, respectively. The threshold friction velocity u*t influences the vertical dust flux and dust transport. Based on the micro-meteorological data obtained in the springs of 2004 and 2006 over Hunshandake desert area, Loess Plateau, and Gobi desert area, the relationship between dust concentration and friction velocity for the dust events that occurred over Hunshandake desert area was investigated, and the threshold friction velocities over the three different dust source areas were estimated. The results show that the value of dust concentration is low during the pre-emission stage of a dust storm event, and the rapid increase of friction velocity provides favor-able dynamic conditions for dust emission. During the dust emission stage, the dust concentration increases sharply due to mechanical and thermal turbulent mixing. At the calm-down stage, the dust concentration drops nearly linearly with the decreasing friction velocity, on account of the gravitational deposition of larger dust particles. When the dust concentration is higher than 200 μgm-3, it is considered as a dust emission process. According to the criteria, the values of threshold friction velocity over Hunshandake desert area and Gobi region are 0.6 and 0.45 m s-1, respectively. The threshold friction velocity over Loess Plateau depends on the wind direction, due to the complex terrain and inhomogeneous surface. The northwest wind shows the effects of the Mu Us desert in the northwest. The corresponding u*t is 0.35 m s-1. The south wind exhibits the characteristics of the Loess hilly dunes in the south, and the u*t is 0.7 m s-1. The large roughness length of the Loess hilly dunes and the large inter-particle cohesion for the clay soil texture increases the local friction velocity. Different threshold friction velocities and occurrence frequencies of strong wind account for different dust emission capabilities for various source areas.展开更多
Dust emission by wind erosion in surface is a serious problem in many arid regions around the world,and it is harmful to the ecological environment,human health,and social economy.To monitor the characteristics of sal...Dust emission by wind erosion in surface is a serious problem in many arid regions around the world,and it is harmful to the ecological environment,human health,and social economy.To monitor the characteristics of saltation activity and to calculate the threshold wind velocity and sediment discharge under field conditions have significance on the research of dust emission by wind erosion.Therefore,a field experiment was conducted over the flat sand in the hinterland of the Taklimakan Desert.One sampling system was installed on the flat sand surface at Tazhong,consisting of a meteorological tower with a height of 2 m,a piezoelectric saltation sensor(Sensit),and a Big Spring Number Eight(BSNE) sampler station.Occurrence of saltation activity was recorded every second using the Sensit.Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0.05 m and the highest sampler at 1.0 m above the soil surface.Sediment was collected from the samplers every 24 h.It is found that saltation activity was detected for only 21.5% of the hours measured,and the longest period of saltation activity occurring continuously was not longer than 5 min under the field conditions.The threshold wind velocity was variable,its minimum value was 4.9 m s 1,the maximum value was 9.2 m s 1,and the average value was 7.0 m s 1.The threshold wind velocity presented a positive linear increase during the measurement period.The observation site had a sediment discharge of 82.1 kg m 1 over a period of 24 h.Based on hourly saltation counts,hourly sediment discharge was estimated.Overall,there was no obvious linear or other functional relationship between the hourly sediment discharge and wind velocity.The results show that the changes of sediment discharge do not quite depend on wind velocity.展开更多
The present study investigates the characteristics of turbulent transfer and the conditions for dust emission and transport using the dust concentration and micrometeorological data obtained during dust events occurri...The present study investigates the characteristics of turbulent transfer and the conditions for dust emission and transport using the dust concentration and micrometeorological data obtained during dust events occurring in the spring of 2004 over the Hunshandake desert area. The turbulent exchange coefficients and turbulent fluxes of momentum and heat are calculated. The relationships between dust flux, friction velocity, and wind speed are also explored. The results show that thermal turbulence is dominant during daytime of non-dusty days. The dynamic turbulence increases obviously and the sensible heat flux reduces by different degrees during dust events. There is an efficient downward transfer of momentum before duststorm occurrence, and both the dynamic turbulence and the thermal turbulence are important in the surface layer. The dynamic turbulence even exceeds the thermal turbulence during severe duststorm events. The values of dust flux vary in the range of -5 5, -30 30, and -200-300 μg m^-2 s^-1 during non-dusty days, blowing dust, and duststorm events, respectively. A slight upward transport of dust is observed during non-dusty days. The dust flux gradually varies from positive to negative during duststorm periods, which indicates the time evolution of dust events from dust rising to stably suspending and then deposition. The dust flux is found to be proportional to u*^3. The threshold values of wind speed and friction velocity are about 6 and 0.4 m s^-1, respectively.展开更多
This study presents experimental results of the change in threshold friction velocity and dust emission strength as a function of soil moisture content. The dust and soil moisture data were obtained from irrigated plo...This study presents experimental results of the change in threshold friction velocity and dust emission strength as a function of soil moisture content. The dust and soil moisture data were obtained from irrigated plots of a bare, sandy soil (no vegetation) situated in the Mongolian steppe. Dust flux was measured using the PI-SWERL^(R) device, while soil moisture was measured using gravimetric methods. Our results demonstrate the strong controlling effects of soil moisture on both the threshold friction velocity and dust emission strengths. Threshold friction velocity increased from 0.44 m/s for dry soil (0.002 g/g) to 0.67 m/s for wet soil (0.06 g/g), confirming the importance of soil moisture for controlling dust events. Dust emission strength was significantly depressed for wet soils, starting at a soil moisture value of 0.02 g/g. From these results, we developed a simple dust diagram that may be useful as part of a warning system to identify initial sensitivity to threshold conditions as well as conditions that could lead to potentially significant dust emissions. Overall, the research findings in this study could be used to provide foreknowledge of conditions that would be conducive to high dust emissions for this area of Mongolia.展开更多
文摘On the ground of wharf and a station where coal is piled up, the sources polluting the atmosphere are mainly the raised coal dust. According to the principle of mechanics, with the consideration of the gravities of coal dust particles and liquid droplets, coal dust size and humidity, under the condition of force balance when the coal dust was raised, the authors obtaineda theoretical formula for the threshold velocity of coal dust with humidity,Finally, the theoretical values from the formula gave a good agreement with the experimental data from some wind tunnels.
基金Basic Research Funds for Colleges and Universities directly under the Inner Mongolia Autonomous Region:Desert Ecosystem Protection and Restoration Innovation Team(BR 22-13-03).
文摘Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter(PM)with an aerodynamic diameter of 10μm or less(PM10)according to the air quality standards.However,little is known about the threshold friction velocity(TFV)for particles of different sizes that comprise these soils.In this study,soil samples of two representative soil types(Warden sandy loam and Ritzville silt loam)collected from the Columbia Plateau were sieved to seven particle size fractions,and an experiment was then conducted to determine the relationship between TFV and particle size fraction.The results revealed that soil particle size significantly affected the initiation of soil movement and TFV;TFV ranged 0.304-0.844 and 0.249-0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam,respectively.PM10 and total suspended particulates(TSP)emissions from a bed of 63-90μm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam.Together with the lower TFV of Warden sandy loam,dust emissions from fine particles(<100μm in diameter)of Warden sandy loam thus may be a main contributor to dust in the region's atmosphere,since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau.Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau.
文摘To quantize the difficulty level of dust production on the surface of different types of farmland,the Marticorena threshold frictional velocity pattern was used in this study to simulate the dust threshold frictional velocity.The results showed that the dust threshold frictional velocity of desertification farmland was 7.39cm/s,while it was 29.05 cm/s after the wheat harvested and the farmland ploughed; the turning green period was 46.85 cm/s; shooting period was 98.93 cm/s,the uncovered and the establishment period of fruit tree farmland was 26.0 and 139.15 cm/s.It was concluded that,bare desertification farmland could be changed into source of dust release easier.
基金This study was supported by the Arid Land Research Center's Project(Impacts of Climate Change on Drylands:Assessment and Adaptation,funded by the Japan's Ministry of Education,Culture,Sports,Science,and Technology)the Grants-in-Aid for Scientific Research(JSPS KAKENHI)(15H05115,17H01616,16H02712,and 25220201)+1 种基金the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency(JPMEERF20205001)This study was funded by the Joint Research Program of Arid Land Research Center,Tottori University(31C2003 and 31C2012).
文摘Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands.Stony deserts are widely distributed in the Gobi Desert,but the effect of stones on wind erosion and dust emission have not been well studied,except under artificial conditions.In this study,we evaluated the effect of stones on wind erosion and dust emission by measuring the sand saltation threshold in a stony desert in Tsogt-Ovoo in the Gobi Desert,Mongolia,under natural surface conditions during sand and dust storms.We quantified the amount of stones by measuring the roughness density,and determined the threshold friction velocity for sand saltation by measuring wind speed and sand saltation count.Our results showed that the threshold friction velocity increased with the roughness density of stones.In the northern part of the study area,where neither a surface crust nor vegetation was observed,the roughness density of stones was 0.000 in a topographic depression(TD),0.050 on a northern slope(N.SL),and 0.160 on the northern mountain(N.MT).The mean threshold friction velocity values were 0.23,0.41,and 0.57 m/s at the TD,N.SL,and N.MT sites,respectively.In the southern part of the study area,the roughness density values of stones were 0.000 and 0.070-0.320 at the TD and southern slope sites,respectively,and the mean threshold friction velocities were 0.23 and 0.45-0.71 m/s,respectively.We further compared the observed threshold friction velocities with simulated threshold friction velocities using Raupach's theoretical roughness correction and the measured roughness density values,and found that Raupach's roughness correction worked very well in the simulation of threshold friction velocity in the stony desert.This means that the results of our stone measurement can be applied to a numerical dust model.
文摘Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also be used for explosion, intrinsic, and fire safety. Every destructible material can be considered as either ductile or brittle in terms of its fracture mechanics. Thus, there is a need for a method to predict the efficiency of cutting with AWJs that is highly accurate irrespective of material. This problem can be solved using the energy conservation approach, which states the proportionality between the material removal volume and the kinetic energy of AWJs. This paper describes a method based on this approach, along with recommendations on reaching the most effective level of destruction. Recommendations are provided regarding rational ranges of values for the relation of abrasive flow rate to water flow rate, standoff distance, and size of abrasive particles. I also provide a parameter to establish the threshold conditions for a material's destruction initiation based on the temporary-structural approach of fracture mechanics.
基金financially supported by the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2013Z007)the National Natural Science Foundation of China (Grant No. 41302242)
文摘Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.
基金Under the auspices of National Natural Science Foundation of China (No. 40930741, 41071009, 41001005)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-329)
文摘Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.
基金This study was supported through funds of the University of Padua to the Department of Comparative Biomedicine and Food Science(PhD grant awarded to O.K.,research scholarship awarded to C.G.),of the Italian Ministry of Education,University and Research(MIUR,Progetto Dipartimenti di Eccellenza,DM 11/05/2017 n.262)to the Department of General Psychology,and of Fondazione CARIPARO(PhD grant awarded to M.L.).
文摘The ability to perceive motion is a fundamental property of the visual system,and one of its most basic aspects is the ability to discriminate moving objects from motionless ones,for example,motion detection.Velocity thresholds represent the minimum rate of displacement over time unit that an animal is able to perceive as movement,any slower motion being not discriminable from a still object.Although such topic has grabbed the attention of scientists already at the beginning of the 20th century,the interest has waned in time,and velocity thresholds have thus far been assessed in only a handful of species.
基金the funding received from the West Light Foundation of the Chinese Academy of Sciences (290828911)the Natural Science Foundation of China (Grant No. 40638038)
文摘Sand transport by wind plays an important role in environmental problems.Formulating the sand-transport rate model has been of continuing significance,because the majority of the existing models relate sand-transport rate to the wind-shear velocity.However,the wind-shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs,especially at high wind velocity.Detailed wind tunnel tests were carried out to reformulate the sand-transport rate model,followed by attempts to relate sand-transport rate to parameters of wind velocity,threshold shear-velocity,and grain size.Finally,we validated the model based on the data from field observations.
基金Supported by the National Natural Science Foundation of China under Grant Nos.41075005 and 40775013the "973" National Key Basic Research Program of China under Grant No.2010CB428501+2 种基金the R&D Special Fund for Public Welfare (meteorology) by the Ministry of FinanceMinistry of Science and Technology of China under Grant No.GYHY200806007the National Basic Research and Development Program under Grant No.2006AA06A306
文摘The emission of dust particles into the atmosphere is governed by the aerodynamic and resistant factors, which are quantified by the friction velocity u. and the threshold friction velocity u*t, respectively. The threshold friction velocity u*t influences the vertical dust flux and dust transport. Based on the micro-meteorological data obtained in the springs of 2004 and 2006 over Hunshandake desert area, Loess Plateau, and Gobi desert area, the relationship between dust concentration and friction velocity for the dust events that occurred over Hunshandake desert area was investigated, and the threshold friction velocities over the three different dust source areas were estimated. The results show that the value of dust concentration is low during the pre-emission stage of a dust storm event, and the rapid increase of friction velocity provides favor-able dynamic conditions for dust emission. During the dust emission stage, the dust concentration increases sharply due to mechanical and thermal turbulent mixing. At the calm-down stage, the dust concentration drops nearly linearly with the decreasing friction velocity, on account of the gravitational deposition of larger dust particles. When the dust concentration is higher than 200 μgm-3, it is considered as a dust emission process. According to the criteria, the values of threshold friction velocity over Hunshandake desert area and Gobi region are 0.6 and 0.45 m s-1, respectively. The threshold friction velocity over Loess Plateau depends on the wind direction, due to the complex terrain and inhomogeneous surface. The northwest wind shows the effects of the Mu Us desert in the northwest. The corresponding u*t is 0.35 m s-1. The south wind exhibits the characteristics of the Loess hilly dunes in the south, and the u*t is 0.7 m s-1. The large roughness length of the Loess hilly dunes and the large inter-particle cohesion for the clay soil texture increases the local friction velocity. Different threshold friction velocities and occurrence frequencies of strong wind account for different dust emission capabilities for various source areas.
基金Supported by the National Natural Science Foundation of China (41175017 and 41175140)China Meteorological Administration Special Public Welfare Research Fund (GYHY201006012)
文摘Dust emission by wind erosion in surface is a serious problem in many arid regions around the world,and it is harmful to the ecological environment,human health,and social economy.To monitor the characteristics of saltation activity and to calculate the threshold wind velocity and sediment discharge under field conditions have significance on the research of dust emission by wind erosion.Therefore,a field experiment was conducted over the flat sand in the hinterland of the Taklimakan Desert.One sampling system was installed on the flat sand surface at Tazhong,consisting of a meteorological tower with a height of 2 m,a piezoelectric saltation sensor(Sensit),and a Big Spring Number Eight(BSNE) sampler station.Occurrence of saltation activity was recorded every second using the Sensit.Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0.05 m and the highest sampler at 1.0 m above the soil surface.Sediment was collected from the samplers every 24 h.It is found that saltation activity was detected for only 21.5% of the hours measured,and the longest period of saltation activity occurring continuously was not longer than 5 min under the field conditions.The threshold wind velocity was variable,its minimum value was 4.9 m s 1,the maximum value was 9.2 m s 1,and the average value was 7.0 m s 1.The threshold wind velocity presented a positive linear increase during the measurement period.The observation site had a sediment discharge of 82.1 kg m 1 over a period of 24 h.Based on hourly saltation counts,hourly sediment discharge was estimated.Overall,there was no obvious linear or other functional relationship between the hourly sediment discharge and wind velocity.The results show that the changes of sediment discharge do not quite depend on wind velocity.
基金the National Natural Science Foundation of China under Grant No.40775013"863" Program of China under Grant No.2006AA06A306+1 种基金the Special Commonweal Research Program of the Ministry of Science and Technology under Grant No.2008416018the Research Fund for the Doctoral Program of Higher Education under Grant No.20060001025.
文摘The present study investigates the characteristics of turbulent transfer and the conditions for dust emission and transport using the dust concentration and micrometeorological data obtained during dust events occurring in the spring of 2004 over the Hunshandake desert area. The turbulent exchange coefficients and turbulent fluxes of momentum and heat are calculated. The relationships between dust flux, friction velocity, and wind speed are also explored. The results show that thermal turbulence is dominant during daytime of non-dusty days. The dynamic turbulence increases obviously and the sensible heat flux reduces by different degrees during dust events. There is an efficient downward transfer of momentum before duststorm occurrence, and both the dynamic turbulence and the thermal turbulence are important in the surface layer. The dynamic turbulence even exceeds the thermal turbulence during severe duststorm events. The values of dust flux vary in the range of -5 5, -30 30, and -200-300 μg m^-2 s^-1 during non-dusty days, blowing dust, and duststorm events, respectively. A slight upward transport of dust is observed during non-dusty days. The dust flux gradually varies from positive to negative during duststorm periods, which indicates the time evolution of dust events from dust rising to stably suspending and then deposition. The dust flux is found to be proportional to u*^3. The threshold values of wind speed and friction velocity are about 6 and 0.4 m s^-1, respectively.
文摘This study presents experimental results of the change in threshold friction velocity and dust emission strength as a function of soil moisture content. The dust and soil moisture data were obtained from irrigated plots of a bare, sandy soil (no vegetation) situated in the Mongolian steppe. Dust flux was measured using the PI-SWERL^(R) device, while soil moisture was measured using gravimetric methods. Our results demonstrate the strong controlling effects of soil moisture on both the threshold friction velocity and dust emission strengths. Threshold friction velocity increased from 0.44 m/s for dry soil (0.002 g/g) to 0.67 m/s for wet soil (0.06 g/g), confirming the importance of soil moisture for controlling dust events. Dust emission strength was significantly depressed for wet soils, starting at a soil moisture value of 0.02 g/g. From these results, we developed a simple dust diagram that may be useful as part of a warning system to identify initial sensitivity to threshold conditions as well as conditions that could lead to potentially significant dust emissions. Overall, the research findings in this study could be used to provide foreknowledge of conditions that would be conducive to high dust emissions for this area of Mongolia.