Fluid flow throttling is common in industrial and building services engineering.Similar tunnel throttling of vehicular flow is caused by the abrupt number reduction of roadway lane,as the tunnel has a lower lane numbe...Fluid flow throttling is common in industrial and building services engineering.Similar tunnel throttling of vehicular flow is caused by the abrupt number reduction of roadway lane,as the tunnel has a lower lane number than in the roadway normal segment.To predict the effects of tunnel throttling of annular freeway vehicular flow,a three-lane continuum model is developed.LaneⅢof the tunnel is completely blocked due to the need of tunnel rehabilitation,etc.There exists mandatory net lane-changing rate from laneⅢto laneⅡjust upstream of the tunnel entrance,which is described by a model of random number generated through a golden section analysis.The net-changing rate between adjacent lanes is modeled using a lane-changing time expressed explicitly in algebraic form.This paper assumes that the annular freeway has a total length of 100 km,a two-lane tunnel of length 2 km with a speed limit of 80 km/h.The free flow speeds on lanesⅠ,ⅡandⅢare assumed to be 110,100 and 90 km/h respectively.Based on the three-lane continuum model,numerical simulations of vehicular flows on the annular freeway with such a tunnel are conducted with a reliable numerical method of 3rd-order accuracy.Numerical results reveal that the vehicular flow has a smaller threshold of traffic jam formation in comparison with the case without tunnel throttling.Vehicle fuel consumption can be estimated by interpolation with time averaged grid traffic speed and an assumed curve of vehicle performance.The vehicle fuel consumption is lane number dependent,distributes with initial density concavely,ranging from 5.56 to 8.00 L.Tunnel throttling leads to an earlier traffic jam formation in comparison with the case without tunnel throttling.展开更多
Hollow cathode discharges are widely used as neutralizers for the electric propulsion systems and recently developed into micro-thrusters for the small satellites.In this work,a dualemitter hollow cathode thruster is ...Hollow cathode discharges are widely used as neutralizers for the electric propulsion systems and recently developed into micro-thrusters for the small satellites.In this work,a dualemitter hollow cathode thruster is developed,which can be operated in two different modes—the neutralizer mode and the micro-thruster mode.For characterizing this kind of new device,the Langmuir probe,Faraday probe,and retarding potential analyzer are used to determine the electron temperature,electron density,ion flux,and ion energy distribution function.The operating parameters,including the thrust,and specific impulse,are also measured.A two-dimensional self-consistent extended fluid model is employed to calculate the spatial distribution of plasma parameters and the fluid field of electrons in the region around the emitters.By comparing the diagnostic and modelling results,it is found that the change in the electric field and ionization zone is the essential reason for the different performances of the device in the neutralizer and micro-thruster modes.Variation in the electric field leads to an ion acceleration effect in the micro-thruster mode;moving of the ionization zone raises the plasma pressure in the orifice region of the hollow cathode,and thus leads to enhanced plasma throttling and gas expanding effects.By analyzing the above mechanisms,the possible methods for improving this kind of hollow cathode micro-thruster are discussed.展开更多
Wellbore temperature field equations are established with considerations of the enthalpy changes of the natural gas during the deep-water gas well testing. A prediction method for the natural gas hydrate formation reg...Wellbore temperature field equations are established with considerations of the enthalpy changes of the natural gas during the deep-water gas well testing. A prediction method for the natural gas hydrate formation region during the deep-water gas well testing is proposed, which combines the wellbore temperature field equations, the phase equilibrium conditions of the natural gas hydrate formation and the calculation methods for the pressure field. Through the sensitivity analysis of the parameters that affect the hydrate formation region, it can be concluded that during the deep-water gas well testing, with the reduction of the gas production rate and the decrease of the geothermal gradient, along with the increase of the depth of water, the hydrate formation region in the wellbore enlarges, the hydrate formation regions differ with different component contents of natural gases, as compared with the pure methane gas, with the increase of ethane and propane, the hydrate formation region expands, the admixture of inhibitors, the type and the concentrations of which can be optimized through the method proposed in the paper, will reduce the hydrate formation region, the throttling effect will lead to the abrupt changes of temperature and pressure, which results in a variation of the hydrate formation region, if the throttling occurs in the shallow part of the wellbore, the temperature will drop too much, which enlarges the hydrate formation region, otherwise, if the throttling occurs in the deep part of the wellbore, the hydrate formation region will be reduced due to the decrease of the pressure.展开更多
基金supported by the project of National Natural Science Foundation of China“exploring the road condition effect of travel time using emergency mitigation traffic flow models”(grant 11972341)fundamental research project of Lomonosov Moscow State University“mathematical models for multi-phase media and wave processes in natural,technical and social systems”。
文摘Fluid flow throttling is common in industrial and building services engineering.Similar tunnel throttling of vehicular flow is caused by the abrupt number reduction of roadway lane,as the tunnel has a lower lane number than in the roadway normal segment.To predict the effects of tunnel throttling of annular freeway vehicular flow,a three-lane continuum model is developed.LaneⅢof the tunnel is completely blocked due to the need of tunnel rehabilitation,etc.There exists mandatory net lane-changing rate from laneⅢto laneⅡjust upstream of the tunnel entrance,which is described by a model of random number generated through a golden section analysis.The net-changing rate between adjacent lanes is modeled using a lane-changing time expressed explicitly in algebraic form.This paper assumes that the annular freeway has a total length of 100 km,a two-lane tunnel of length 2 km with a speed limit of 80 km/h.The free flow speeds on lanesⅠ,ⅡandⅢare assumed to be 110,100 and 90 km/h respectively.Based on the three-lane continuum model,numerical simulations of vehicular flows on the annular freeway with such a tunnel are conducted with a reliable numerical method of 3rd-order accuracy.Numerical results reveal that the vehicular flow has a smaller threshold of traffic jam formation in comparison with the case without tunnel throttling.Vehicle fuel consumption can be estimated by interpolation with time averaged grid traffic speed and an assumed curve of vehicle performance.The vehicle fuel consumption is lane number dependent,distributes with initial density concavely,ranging from 5.56 to 8.00 L.Tunnel throttling leads to an earlier traffic jam formation in comparison with the case without tunnel throttling.
基金supported by the National Natural Science Foundation of China(Nos.61571166,11775063 and 51736003)。
文摘Hollow cathode discharges are widely used as neutralizers for the electric propulsion systems and recently developed into micro-thrusters for the small satellites.In this work,a dualemitter hollow cathode thruster is developed,which can be operated in two different modes—the neutralizer mode and the micro-thruster mode.For characterizing this kind of new device,the Langmuir probe,Faraday probe,and retarding potential analyzer are used to determine the electron temperature,electron density,ion flux,and ion energy distribution function.The operating parameters,including the thrust,and specific impulse,are also measured.A two-dimensional self-consistent extended fluid model is employed to calculate the spatial distribution of plasma parameters and the fluid field of electrons in the region around the emitters.By comparing the diagnostic and modelling results,it is found that the change in the electric field and ionization zone is the essential reason for the different performances of the device in the neutralizer and micro-thruster modes.Variation in the electric field leads to an ion acceleration effect in the micro-thruster mode;moving of the ionization zone raises the plasma pressure in the orifice region of the hollow cathode,and thus leads to enhanced plasma throttling and gas expanding effects.By analyzing the above mechanisms,the possible methods for improving this kind of hollow cathode micro-thruster are discussed.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51104172,U1262202)the Pro-gram for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1086)
文摘Wellbore temperature field equations are established with considerations of the enthalpy changes of the natural gas during the deep-water gas well testing. A prediction method for the natural gas hydrate formation region during the deep-water gas well testing is proposed, which combines the wellbore temperature field equations, the phase equilibrium conditions of the natural gas hydrate formation and the calculation methods for the pressure field. Through the sensitivity analysis of the parameters that affect the hydrate formation region, it can be concluded that during the deep-water gas well testing, with the reduction of the gas production rate and the decrease of the geothermal gradient, along with the increase of the depth of water, the hydrate formation region in the wellbore enlarges, the hydrate formation regions differ with different component contents of natural gases, as compared with the pure methane gas, with the increase of ethane and propane, the hydrate formation region expands, the admixture of inhibitors, the type and the concentrations of which can be optimized through the method proposed in the paper, will reduce the hydrate formation region, the throttling effect will lead to the abrupt changes of temperature and pressure, which results in a variation of the hydrate formation region, if the throttling occurs in the shallow part of the wellbore, the temperature will drop too much, which enlarges the hydrate formation region, otherwise, if the throttling occurs in the deep part of the wellbore, the hydrate formation region will be reduced due to the decrease of the pressure.