Throttling of large-thrust liquid rocket engines,which can improve mission adaptability of a carrier rocket,reduce risk and facilitate rocket recovery,is a key technology for current and future space development.This ...Throttling of large-thrust liquid rocket engines,which can improve mission adaptability of a carrier rocket,reduce risk and facilitate rocket recovery,is a key technology for current and future space development.This paper summarizes the state of the art and trends of throttling technology for large-thrust liquid rocket engines at home and abroad.According to the working principles of propulsion for rocket engines,throttling the propellant flow rate is a major way of adjusting thrust,and regulation devices along with adjustable injectors are primary measures of throttling propellant flow rates.This paper clarifies the working principles of typical regulation devices and adjustable injectors,introduces the regulation schemes of typical large-thrust engines such as YF-100,RD-170,and SSME,and summarizes the main characteristics of current throttleable large-thrust engines.Finally,critical technologies and development trends of throttling are discussed,including combustion stability and reliable cooling of thrust chambers at low thrust levels,turbopump stability,and stable regulation and precise control in a wide range of operating conditions.展开更多
An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inv...An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.展开更多
Multi stage and multi orifice throttling analysis for bypass valves in thermal power generating sets is important for normal operation of power generating equipment. It is improper to exclude the factor of flow resist...Multi stage and multi orifice throttling analysis for bypass valves in thermal power generating sets is important for normal operation of power generating equipment. It is improper to exclude the factor of flow resistance from the expansion coefficient for the flow formula used for analysing the multi stage and multi orifice flow of compressible fluid, which means expansion of gas has nothing to do with resistance. The authors put forward an expanded energy equation and related formula to overcome the drawback, and use them for multi stage and multi orifice throttling analysis of compressible fluid for thermal power generating sets.展开更多
In this work an experimental investigation was carried out in order to explore the possibility of realizing a domestic heating system by throttling hydraulic oil. Considering the continuous increasing price of diesel ...In this work an experimental investigation was carried out in order to explore the possibility of realizing a domestic heating system by throttling hydraulic oil. Considering the continuous increasing price of diesel oil, this work gains unique importance. Generating heat directly by throttling is realized using a simple environment friendly system which does not require oil transportation and storage, and eliminates the need for chimneys and annual preventive maintenance, as it is the case with heating by utilizing oil burners, which is prevailing in Jordan. Experimental results show that it is possible to raise the room temperature up to 70?C during 15 minutes which is not a limit value. Experimental results show that temperature rate could be increased by selecting the appropriate pump power and by connecting a number of throttles in parallel.展开更多
Cloud Technology is a new platform that offers on-demand computing Peripheral such as storage,processing power,and other computer system resources.It is also referred to as a system that will let the consumers utilize...Cloud Technology is a new platform that offers on-demand computing Peripheral such as storage,processing power,and other computer system resources.It is also referred to as a system that will let the consumers utilize computational resources like databases,servers,storage,and intelligence over the Internet.In a cloud network,load balancing is the process of dividing network traffic among a cluster of available servers to increase efficiency.It is also known as a server pool or server farm.When a single node is overwhelmed,balancing the workload is needed to manage unpredictable workflows.The load balancer sends the load to another free node in this case.We focus on the Balancing of workflows with the proposed approach,and we present a novel method to balance the load that manages the dynamic scheduling process.One of the preexisting load balancing techniques is considered,however it is somewhat modified to fit the scenario at hand.Depending on the experimentation’s findings,it is concluded that this suggested approach improves load balancing consistency,response time,and throughput by 6%.展开更多
Fluid flow throttling is common in industrial and building services engineering.Similar tunnel throttling of vehicular flow is caused by the abrupt number reduction of roadway lane,as the tunnel has a lower lane numbe...Fluid flow throttling is common in industrial and building services engineering.Similar tunnel throttling of vehicular flow is caused by the abrupt number reduction of roadway lane,as the tunnel has a lower lane number than in the roadway normal segment.To predict the effects of tunnel throttling of annular freeway vehicular flow,a three-lane continuum model is developed.LaneⅢof the tunnel is completely blocked due to the need of tunnel rehabilitation,etc.There exists mandatory net lane-changing rate from laneⅢto laneⅡjust upstream of the tunnel entrance,which is described by a model of random number generated through a golden section analysis.The net-changing rate between adjacent lanes is modeled using a lane-changing time expressed explicitly in algebraic form.This paper assumes that the annular freeway has a total length of 100 km,a two-lane tunnel of length 2 km with a speed limit of 80 km/h.The free flow speeds on lanesⅠ,ⅡandⅢare assumed to be 110,100 and 90 km/h respectively.Based on the three-lane continuum model,numerical simulations of vehicular flows on the annular freeway with such a tunnel are conducted with a reliable numerical method of 3rd-order accuracy.Numerical results reveal that the vehicular flow has a smaller threshold of traffic jam formation in comparison with the case without tunnel throttling.Vehicle fuel consumption can be estimated by interpolation with time averaged grid traffic speed and an assumed curve of vehicle performance.The vehicle fuel consumption is lane number dependent,distributes with initial density concavely,ranging from 5.56 to 8.00 L.Tunnel throttling leads to an earlier traffic jam formation in comparison with the case without tunnel throttling.展开更多
Based on analyzing the limit of Ziolkowski's bubble oscillation formulation,a new model with various physical factors is established to simulate air gun signatures fo marine seismic exploration.The practical effects ...Based on analyzing the limit of Ziolkowski's bubble oscillation formulation,a new model with various physical factors is established to simulate air gun signatures fo marine seismic exploration.The practical effects of physical factors,such as heat transfe across the bubble wall,air gun port throttling,vertical rise of the bubble,fluid viscosity,and the existence of the air gun body were all taken into account in the new model.Compared with Ziolkowski's model,the signatures simulated by the new model,with small peak amplitude and rapid decay of bubble oscillation,are more consistent with actual signatures The experiment analysis indicates:(1)gun port throttling controls the peak amplitude of ai gun pulse;(2)since the hydrostatic pressure decreases when the bubble rises,the bubble oscillation period changes;(3)heat transfer and fluid viscosity are the main factors tha explain the bubble oscillation damping.展开更多
Models that simulate the signature of single airguns form the basis for modeling the signals of airgun arrays. Most of the existing models assume that the air inside the produced bubble is ideal gas, which may lead to...Models that simulate the signature of single airguns form the basis for modeling the signals of airgun arrays. Most of the existing models assume that the air inside the produced bubble is ideal gas, which may lead to errors because of the high operating pressure of the airguns. In this study, we propose a model that precisely simulates the signals of single airguns by applying the Van der Waals equation based on the Ziolkowski algorithm. We also consider a thermodynamically open quasistatic system, the heat transition between water and gas, the throttling effect of the port and the bubble rise, and the effect of the sea surface. Modeling experiments show that(1) the energy of the source increases and the signal-tonoise ratio of the signature wavelet decreases with increasing seawater temperature,(2) the reflection coefficient of the sea surface under the actual state and depth of the source affects the notch caused by the surface reflection,(3) the computed signature with the proposed model is very close to the actual data, and(4) the proposed model accurately simulates the signature of single airguns.展开更多
This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at ...This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.展开更多
Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of ...Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.展开更多
In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and ...In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented. Compared with the existing control strategies for an ET, input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy. At first, the nonlinear dynamic model for control of an ET is described. According to the dynamical model, the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed. Parameter adaptive law is given to estimate the unknown parameter with an ET. An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation. Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory. Finally, the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET.展开更多
Based on the solution of the governing differential equation for deformation of throttle slice while satisfying required boundary conditions, the coefficient (Gr) and an analytical formula for computing the deformat...Based on the solution of the governing differential equation for deformation of throttle slice while satisfying required boundary conditions, the coefficient (Gr) and an analytical formula for computing the deformation of throttle slice is presented through equivalency transformation, which is a concise, accurate and practical method for throttle slice design and characteristic analysis. Researched the deformation at any radius, compared with ANSYS FEA software by the simulation analysis, the availability opening size of throttle that was defined by the deformation at the valve mouth radius is studied. The affection of valve mouth radius to the damper characteristic is analyzed. Tests are made for the damper characteristic, compared with simulation results, it is shown that Gr method is an accurate computation method for computing the deformation of throttle slice at valve mouth radius, suitihle to use in the damper design, analysis, and verification. The deformation at mouth radius could not be replaced with the outside radius.展开更多
In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influe...In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.展开更多
Experimental investigations are made on the effects of operating conditionson the flow characteristics of throttle when tap water is used as the working media. The researchedthrottles include cone poppet valve, ball v...Experimental investigations are made on the effects of operating conditionson the flow characteristics of throttle when tap water is used as the working media. The researchedthrottles include cone poppet valve, ball valve, disc valve and dumping orifice. Operating conditionincludes poppet lift, working media, back pressure, medium temperature, etc. Because the vapourouspressure of water is much higher than that of oil, cavitation is easier to occur in water hydraulicelements and systems, so the effects of operating conditions on the cavitation characteristics ofthrottle are also researched.展开更多
Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the process...Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.展开更多
Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems res...Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.展开更多
A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative veloc...A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.展开更多
Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift an...Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift and so on. Based on simulation, the responding throttle control strategies are proposed, and a simple but effective throttle control method is presented. The testing results have proved that the strategies are effective for improving the pedal tracking precision and the qualities of start and shift.展开更多
Exhaust thermal management is essential to allow engines to meet the Euro VI emissions standards and reducing nitrogen oxide emissions is one of the most important targets being pursued nowadays.Along these lines,in t...Exhaust thermal management is essential to allow engines to meet the Euro VI emissions standards and reducing nitrogen oxide emissions is one of the most important targets being pursued nowadays.Along these lines,in the present study,engine’s thermal performances have been evaluated on the basis of a WHTC test,namely a transient engine dynamometer schedule defined by the global technical regulation(GTR)developed by the UN ECE GRPE group(the GTR is covering a world-wide harmonized heavy-duty certification(WHDC)procedure for engine exhaust emissions).The influence of thermal management on fuel consumption,intake,and tailpipe NO_(x) have been quantitatively analyzed for the overrun state.The results have shown that there can be a strong influence on the after-treatment temperatures and tailpipe NO_(x).In particular,the average temperature upstream of the diesel oxidation catalyst(DOC)has been found to increase from 245°C to 254°C,the average temperature of the selective catalytic reduction(SCR)to increase from 248°C to 253°C,the SCR’s minimum temperature to increase from 196°C to 204°C,and the peak value of the NO_(x) emissions in the low-temperature region to decrease from 73 to 51 mg/s.However,the influence of the overrun state’s thermal management strategy on the fuel consumption,the air intake,the ammonia storage,the NO_(2)/NO_(x) ratio,and the urea consumption has been observed to be relatively limited.展开更多
文摘Throttling of large-thrust liquid rocket engines,which can improve mission adaptability of a carrier rocket,reduce risk and facilitate rocket recovery,is a key technology for current and future space development.This paper summarizes the state of the art and trends of throttling technology for large-thrust liquid rocket engines at home and abroad.According to the working principles of propulsion for rocket engines,throttling the propellant flow rate is a major way of adjusting thrust,and regulation devices along with adjustable injectors are primary measures of throttling propellant flow rates.This paper clarifies the working principles of typical regulation devices and adjustable injectors,introduces the regulation schemes of typical large-thrust engines such as YF-100,RD-170,and SSME,and summarizes the main characteristics of current throttleable large-thrust engines.Finally,critical technologies and development trends of throttling are discussed,including combustion stability and reliable cooling of thrust chambers at low thrust levels,turbopump stability,and stable regulation and precise control in a wide range of operating conditions.
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219907)
文摘An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.
文摘Multi stage and multi orifice throttling analysis for bypass valves in thermal power generating sets is important for normal operation of power generating equipment. It is improper to exclude the factor of flow resistance from the expansion coefficient for the flow formula used for analysing the multi stage and multi orifice flow of compressible fluid, which means expansion of gas has nothing to do with resistance. The authors put forward an expanded energy equation and related formula to overcome the drawback, and use them for multi stage and multi orifice throttling analysis of compressible fluid for thermal power generating sets.
文摘In this work an experimental investigation was carried out in order to explore the possibility of realizing a domestic heating system by throttling hydraulic oil. Considering the continuous increasing price of diesel oil, this work gains unique importance. Generating heat directly by throttling is realized using a simple environment friendly system which does not require oil transportation and storage, and eliminates the need for chimneys and annual preventive maintenance, as it is the case with heating by utilizing oil burners, which is prevailing in Jordan. Experimental results show that it is possible to raise the room temperature up to 70?C during 15 minutes which is not a limit value. Experimental results show that temperature rate could be increased by selecting the appropriate pump power and by connecting a number of throttles in parallel.
基金supported by the project:“Research and Implementation of Innovative Solutions for Monitoring Consumption in Technical Installations Using Artificial Intelligence”,beneficiary S.C.REMONI TECHNOLOGIES RO S.R.L in partnership with“Gheorghe Asachi”Technical University of Iasi,Financing Contract No.400/390076/26.11.2021,SMIS Code 121866,financed by POC/163/1/3.
文摘Cloud Technology is a new platform that offers on-demand computing Peripheral such as storage,processing power,and other computer system resources.It is also referred to as a system that will let the consumers utilize computational resources like databases,servers,storage,and intelligence over the Internet.In a cloud network,load balancing is the process of dividing network traffic among a cluster of available servers to increase efficiency.It is also known as a server pool or server farm.When a single node is overwhelmed,balancing the workload is needed to manage unpredictable workflows.The load balancer sends the load to another free node in this case.We focus on the Balancing of workflows with the proposed approach,and we present a novel method to balance the load that manages the dynamic scheduling process.One of the preexisting load balancing techniques is considered,however it is somewhat modified to fit the scenario at hand.Depending on the experimentation’s findings,it is concluded that this suggested approach improves load balancing consistency,response time,and throughput by 6%.
基金supported by the project of National Natural Science Foundation of China“exploring the road condition effect of travel time using emergency mitigation traffic flow models”(grant 11972341)fundamental research project of Lomonosov Moscow State University“mathematical models for multi-phase media and wave processes in natural,technical and social systems”。
文摘Fluid flow throttling is common in industrial and building services engineering.Similar tunnel throttling of vehicular flow is caused by the abrupt number reduction of roadway lane,as the tunnel has a lower lane number than in the roadway normal segment.To predict the effects of tunnel throttling of annular freeway vehicular flow,a three-lane continuum model is developed.LaneⅢof the tunnel is completely blocked due to the need of tunnel rehabilitation,etc.There exists mandatory net lane-changing rate from laneⅢto laneⅡjust upstream of the tunnel entrance,which is described by a model of random number generated through a golden section analysis.The net-changing rate between adjacent lanes is modeled using a lane-changing time expressed explicitly in algebraic form.This paper assumes that the annular freeway has a total length of 100 km,a two-lane tunnel of length 2 km with a speed limit of 80 km/h.The free flow speeds on lanesⅠ,ⅡandⅢare assumed to be 110,100 and 90 km/h respectively.Based on the three-lane continuum model,numerical simulations of vehicular flows on the annular freeway with such a tunnel are conducted with a reliable numerical method of 3rd-order accuracy.Numerical results reveal that the vehicular flow has a smaller threshold of traffic jam formation in comparison with the case without tunnel throttling.Vehicle fuel consumption can be estimated by interpolation with time averaged grid traffic speed and an assumed curve of vehicle performance.The vehicle fuel consumption is lane number dependent,distributes with initial density concavely,ranging from 5.56 to 8.00 L.Tunnel throttling leads to an earlier traffic jam formation in comparison with the case without tunnel throttling.
基金supported by the National 973 Program(Grant No.2007CB209608)National 863 Program(Grant No.2007AA06Z218)
文摘Based on analyzing the limit of Ziolkowski's bubble oscillation formulation,a new model with various physical factors is established to simulate air gun signatures fo marine seismic exploration.The practical effects of physical factors,such as heat transfe across the bubble wall,air gun port throttling,vertical rise of the bubble,fluid viscosity,and the existence of the air gun body were all taken into account in the new model.Compared with Ziolkowski's model,the signatures simulated by the new model,with small peak amplitude and rapid decay of bubble oscillation,are more consistent with actual signatures The experiment analysis indicates:(1)gun port throttling controls the peak amplitude of ai gun pulse;(2)since the hydrostatic pressure decreases when the bubble rises,the bubble oscillation period changes;(3)heat transfer and fluid viscosity are the main factors tha explain the bubble oscillation damping.
基金This research is financially supported by the National Science Foundation Project (Grant No. 41176077, 41230318) and the National 973 Program (Grant No. 2009CB219505).
文摘Models that simulate the signature of single airguns form the basis for modeling the signals of airgun arrays. Most of the existing models assume that the air inside the produced bubble is ideal gas, which may lead to errors because of the high operating pressure of the airguns. In this study, we propose a model that precisely simulates the signals of single airguns by applying the Van der Waals equation based on the Ziolkowski algorithm. We also consider a thermodynamically open quasistatic system, the heat transition between water and gas, the throttling effect of the port and the bubble rise, and the effect of the sea surface. Modeling experiments show that(1) the energy of the source increases and the signal-tonoise ratio of the signature wavelet decreases with increasing seawater temperature,(2) the reflection coefficient of the sea surface under the actual state and depth of the source affects the notch caused by the surface reflection,(3) the computed signature with the proposed model is very close to the actual data, and(4) the proposed model accurately simulates the signature of single airguns.
基金supported by the National Natural Science Foundation of China (Grant No.50539070)the Major State Basic Research Development Program of China (Grant No.2006CB403304)
文摘This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.
基金Supported by the China Postdoctoral Science Foundation(2014M552195)the State Key Laboratory Foundation of Subtropical Building,South China University of Technology(2013ZC13)the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,South China University of Technology(2013A061401005)
文摘Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.
基金partially supported by the National Natural Science Foundation of China(61773189)Natural Science Fundamental of Liaoning Province(20170540443)the Program for Liaoning Innovative Research Team in University(LT2016006)
文摘In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented. Compared with the existing control strategies for an ET, input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy. At first, the nonlinear dynamic model for control of an ET is described. According to the dynamical model, the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed. Parameter adaptive law is given to estimate the unknown parameter with an ET. An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation. Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory. Finally, the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET.
基金the Ministerial Level Foundation (5040001) the Nationality Excellence Doctor Thesis Foster & Encouragement Foundation of School of MechanicalVehicular Engineering,Beijing Institute of Technology(No 010003)
文摘Based on the solution of the governing differential equation for deformation of throttle slice while satisfying required boundary conditions, the coefficient (Gr) and an analytical formula for computing the deformation of throttle slice is presented through equivalency transformation, which is a concise, accurate and practical method for throttle slice design and characteristic analysis. Researched the deformation at any radius, compared with ANSYS FEA software by the simulation analysis, the availability opening size of throttle that was defined by the deformation at the valve mouth radius is studied. The affection of valve mouth radius to the damper characteristic is analyzed. Tests are made for the damper characteristic, compared with simulation results, it is shown that Gr method is an accurate computation method for computing the deformation of throttle slice at valve mouth radius, suitihle to use in the damper design, analysis, and verification. The deformation at mouth radius could not be replaced with the outside radius.
基金supported by the Ministry of Science and Technology of the People’s Republic of China[grant numbers 2017YFC0211304]the Natural Science Foundation of Shandong Province[grant number ZR2019MEE041]the Open Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology[grant number NELMS2017A14].
文摘In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.
基金This project is supported by National Natural Science Foundation of China (No.50375056, 59975031).
文摘Experimental investigations are made on the effects of operating conditionson the flow characteristics of throttle when tap water is used as the working media. The researchedthrottles include cone poppet valve, ball valve, disc valve and dumping orifice. Operating conditionincludes poppet lift, working media, back pressure, medium temperature, etc. Because the vapourouspressure of water is much higher than that of oil, cavitation is easier to occur in water hydraulicelements and systems, so the effects of operating conditions on the cavitation characteristics ofthrottle are also researched.
基金Projects(51505289,51275123)supported by the National Natural Science Foundation of China
文摘Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.
文摘Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.
基金the National Natural Science Foundation of China (50122155)
文摘A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.
基金This project is supported by Provincial Open Foundation of Key Lab forAutomobile of Jiangsu, China (No.KJS02076) and 985 Project of AutomotiveEngineering Innovation Platform of Jilin University, China.
文摘Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift and so on. Based on simulation, the responding throttle control strategies are proposed, and a simple but effective throttle control method is presented. The testing results have proved that the strategies are effective for improving the pedal tracking precision and the qualities of start and shift.
基金This work was supported by the Natural Science Foundation Project of Shandong Provincial(Grant No.ZR2019MEE041)the open funds of National Engineering Laboratory of Mobile Source Emission Control Technology(Grant No.NELMS2019A01)。
文摘Exhaust thermal management is essential to allow engines to meet the Euro VI emissions standards and reducing nitrogen oxide emissions is one of the most important targets being pursued nowadays.Along these lines,in the present study,engine’s thermal performances have been evaluated on the basis of a WHTC test,namely a transient engine dynamometer schedule defined by the global technical regulation(GTR)developed by the UN ECE GRPE group(the GTR is covering a world-wide harmonized heavy-duty certification(WHDC)procedure for engine exhaust emissions).The influence of thermal management on fuel consumption,intake,and tailpipe NO_(x) have been quantitatively analyzed for the overrun state.The results have shown that there can be a strong influence on the after-treatment temperatures and tailpipe NO_(x).In particular,the average temperature upstream of the diesel oxidation catalyst(DOC)has been found to increase from 245°C to 254°C,the average temperature of the selective catalytic reduction(SCR)to increase from 248°C to 253°C,the SCR’s minimum temperature to increase from 196°C to 204°C,and the peak value of the NO_(x) emissions in the low-temperature region to decrease from 73 to 51 mg/s.However,the influence of the overrun state’s thermal management strategy on the fuel consumption,the air intake,the ammonia storage,the NO_(2)/NO_(x) ratio,and the urea consumption has been observed to be relatively limited.