The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t...The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.展开更多
This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of...This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. .展开更多
The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in ...The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less).展开更多
This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMI...This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases.展开更多
The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal m...The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter.展开更多
This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,puls...This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,pulsation frequency,amplitude,dimple pitch,dimple depth,Reynolds number)on flow patterns and heat transfer.Validated computational fluid dynamics and the Re-normalization group turbulence model are employed to accurately simulate complex turbulent flow behavior.Local and average heat transfer coefficients are calculated and compared to steady impingement cases,revealing the potential benefits of pulsation for heat transfer enhancement.The study also examines how pulsation-induced flow modulation and thermal mixing affect heat transfer mechanisms.Results indicate that combining fluctuating flow with a dimpled surface can improve heat transfer rates.In summary,increasing pulsation amplitude consistently enhances heat transfer,while the effect of frequency varies between impinging and wall jet zones.展开更多
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ...Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.展开更多
The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:...The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones.展开更多
With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regio...With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems.展开更多
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimate...On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimated, and their variations in more-snow year (1997/ 1998) and less-snow year (1996/ 1997) are analyzed comparatively. The relationships between snow cover of the Tibetan Plateau and plateau’s surface heating to the atmospheric heating are also discussed. The difference between more-snow and less-snow year in spring is remarkably larger than that in winter. Therefore, the effect of anomalous snow cover of the Tibetan Plateau in winter on the plateau heating appears more clearly in the following spring of anomalous snow cover. Key words Tibetan Plateau - Snow cover - Effects - Surface heat fluxes This research was supported by the National Key Programme for Developing Basic Sciences G1998040900 (I), National Natural Science Foundation of China (40075018) and Sichuan Youth Science and Technology Fund.展开更多
In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape...In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.展开更多
A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis...A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis temperature 750℃. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50℃/min and Shenmu coal at 200℃/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate. In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates.展开更多
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is p...The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.展开更多
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on i...The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.展开更多
Using the dataset of 1998 TIPEX, the data of 6 automatic heat balance observational stations (AWS) from May to August 1998, a dataset of 52 surface observational stations over the Tibetan Plateau (TP) and its adjacent...Using the dataset of 1998 TIPEX, the data of 6 automatic heat balance observational stations (AWS) from May to August 1998, a dataset of 52 surface observational stations over the Tibetan Plateau (TP) and its adjacent region, the daily rainfall amounts from about 300 stations in China, the outgoing longwave radiation (OLR) data received by the National Satellite Meteorological Center(NSMC) of China, and TBB data from GMS remote sensing of Japan, the characteristics of the seasonal variation of the surface total heating over TP and its surrounding area in summer 1998 and its relationship with the convection over the subtropical area of the western Pacific is studied in this paper. The results show that the surface total heating over TP had a close relationship with the onset of the rainy season, and after the onset of the rainy season, the regional mean surface total heating over TP decreased distinctly. Furthermore, the regional mean surface total heating over TP had very good negative correlation with TBB over the subtropical area of the western Pacific along 20–30°N, which shows that the surface total heating over TP was able to affect the convection over the subtropical area of the western Pacific.展开更多
In order to understand the initial surface damage of Al piston in unsteady thermal environment like knock combustion,T6 heat treated cast Al-Si-Cu alloy was thermal shocked under different heating speeds between room ...In order to understand the initial surface damage of Al piston in unsteady thermal environment like knock combustion,T6 heat treated cast Al-Si-Cu alloy was thermal shocked under different heating speeds between room temperature and 450°C by adjusting the environmental temperature.The surface evolution was mainly characterized in view of roughness,hardness,morphology,texture,phase and element distribution.Results indicated that both the roughness and hardness went up to the maximum and then decreased with rising heating speed.Micro-structure and phase analysis suggested that the interactions of solid phase transition and oxidation with enhancing thermal stress took responsible for the surface evolution.展开更多
A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results rev...A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection.展开更多
Analysis on NASA Total Ozone Mapping Spectrometer (TOMS) ozone shows a clear ozone loss, ?50 DU (15% of the total ozone), over Scandinavia. Correlation analysis between the ozone loss and the east-to-west sea surface ...Analysis on NASA Total Ozone Mapping Spectrometer (TOMS) ozone shows a clear ozone loss, ?50 DU (15% of the total ozone), over Scandinavia. Correlation analysis between the ozone loss and the east-to-west sea surface temperature (SST) contrast in the North Atlantic shows correlation coefficients ?0.96 for seasonal variation and ?0.70 for monthly mean (168 months) in 1979–1992. Correlation coefficients between the ozone loss and the surface-to-atmosphere heat fluxes are higher than ?0.87. There-fore the authors suggest that the warm Atlantic current carries energy northward to Scandina via and causes ozone loss there via the surface-to-atmosphere heating processes. Key words Ozone loss - North Atlantic - Surface heating - Scandina via This work was supported by the key project KZ951-A-205-05 of CAS, NSFC Project 40075029, IAP innovation project 8-2212, CAS, First Chinese Arctic Expedition of NOA and LAPC of IAP, CAS.展开更多
基金financially supported by the National Natural Science Foundation of China[grant number 42230610]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0103]+1 种基金the Natural Science Foundation of Sichuan Province[grant number 2022NSFSC0217]the Scientific Research Project of Chengdu University of Information Technology[grant number KYTZ201721].
文摘The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.
文摘This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. .
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0103)the National Natural Science Foundation of China(Grant No.42230610)+2 种基金the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC0217)National key research and development program of China(2017YFC1505702)Scientific Research Project of Chengdu University of Information Technology(KYTZ201721).
文摘The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less).
基金supported by the National Natural Science Foundation of China(Nos.42076208,42141019,41831175 and 41706026)the National Key Research and Development Program of China(No.2017YFA0604600)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211209)the Fundamental Research Funds for the Central Universities(Nos.B210202135 and B210201015).
文摘This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases.
文摘The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter.
文摘This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,pulsation frequency,amplitude,dimple pitch,dimple depth,Reynolds number)on flow patterns and heat transfer.Validated computational fluid dynamics and the Re-normalization group turbulence model are employed to accurately simulate complex turbulent flow behavior.Local and average heat transfer coefficients are calculated and compared to steady impingement cases,revealing the potential benefits of pulsation for heat transfer enhancement.The study also examines how pulsation-induced flow modulation and thermal mixing affect heat transfer mechanisms.Results indicate that combining fluctuating flow with a dimpled surface can improve heat transfer rates.In summary,increasing pulsation amplitude consistently enhances heat transfer,while the effect of frequency varies between impinging and wall jet zones.
基金the University Grants Commission,New Delhi,India,for providing financial support in the form of the Junior Research Fellowship。
文摘Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.
基金Under the auspices of the National Natural Science Foundation of China(No.41590841)the National Key Research and Development Program of China(No.2016YFC0503000)the Research Funds of the Chinese Academy of Sciences the Chinese Academy of Sciences(CAS)-the World Academy of Sciences(TWAS)President’s Fellowship。
文摘The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones.
文摘With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems.
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金the National Key Programme for Developing Basic SciencesG1998040900 (I)National Natural Science Foundation of China (400750
文摘On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimated, and their variations in more-snow year (1997/ 1998) and less-snow year (1996/ 1997) are analyzed comparatively. The relationships between snow cover of the Tibetan Plateau and plateau’s surface heating to the atmospheric heating are also discussed. The difference between more-snow and less-snow year in spring is remarkably larger than that in winter. Therefore, the effect of anomalous snow cover of the Tibetan Plateau in winter on the plateau heating appears more clearly in the following spring of anomalous snow cover. Key words Tibetan Plateau - Snow cover - Effects - Surface heat fluxes This research was supported by the National Key Programme for Developing Basic Sciences G1998040900 (I), National Natural Science Foundation of China (40075018) and Sichuan Youth Science and Technology Fund.
基金performed under the auspices of the Chinese National Key Programme for Developing Basic Sciences (Grant No. 2010CB951701)the Innovation Projects of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)+1 种基金the National Natural Science Foundation of China (Grant Nos. 40825015and 40810059006)EU-FP7 project "CEOP-AEGIS"(Grant No. 212921)
文摘In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.
基金financial support from the Basic Fund for the Scientific Research and Operation of Central Universities of China (No. 2009KH10
文摘A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis temperature 750℃. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50℃/min and Shenmu coal at 200℃/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate. In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates.
基金supported by the National Natural Science Foundation of China (No. 90716011)
文摘The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.
基金Project(2013AA064003)supported by the National High Technology Research and Development Program of ChinaProject(2012HB008)supported by Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province,China
文摘The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.
基金the National Natural Science Foundation of China under Grant Nos.40075018 and 49971062.
文摘Using the dataset of 1998 TIPEX, the data of 6 automatic heat balance observational stations (AWS) from May to August 1998, a dataset of 52 surface observational stations over the Tibetan Plateau (TP) and its adjacent region, the daily rainfall amounts from about 300 stations in China, the outgoing longwave radiation (OLR) data received by the National Satellite Meteorological Center(NSMC) of China, and TBB data from GMS remote sensing of Japan, the characteristics of the seasonal variation of the surface total heating over TP and its surrounding area in summer 1998 and its relationship with the convection over the subtropical area of the western Pacific is studied in this paper. The results show that the surface total heating over TP had a close relationship with the onset of the rainy season, and after the onset of the rainy season, the regional mean surface total heating over TP decreased distinctly. Furthermore, the regional mean surface total heating over TP had very good negative correlation with TBB over the subtropical area of the western Pacific along 20–30°N, which shows that the surface total heating over TP was able to affect the convection over the subtropical area of the western Pacific.
基金Project(DLBF2018-KY-JS-066-J)supported by the China North Engine Research InstituteProject(51902239)supported by the National Natural Science Foundation of China+3 种基金Project(2020JQ-808)supported by the Science and Technology Fund of Shaanxi Province,ChinaProjects(19JK0400,19JK0402)supported by the Education Fund of Shaanxi Province,ChinaProject(S202010702070)supported by the Innovation and Entrepreneurship Training Program for College Students,ChinaProject supported by the Youth Innovation Team of Shaanxi Universities:Metal Corrosion Protection and Surface Engineering Technology,China。
文摘In order to understand the initial surface damage of Al piston in unsteady thermal environment like knock combustion,T6 heat treated cast Al-Si-Cu alloy was thermal shocked under different heating speeds between room temperature and 450°C by adjusting the environmental temperature.The surface evolution was mainly characterized in view of roughness,hardness,morphology,texture,phase and element distribution.Results indicated that both the roughness and hardness went up to the maximum and then decreased with rising heating speed.Micro-structure and phase analysis suggested that the interactions of solid phase transition and oxidation with enhancing thermal stress took responsible for the surface evolution.
基金Project of Important Research Direction of Knowledge Infrastructure Building by the ChineseAcademy of Sciences (ZKCX2-WS-210) Research Project on Monitoring and Pre-warning Techniques of SevereWeather in the Pearl River Delta (2003DIB4J145)
文摘A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection.
基金the key project KZ951-A-205-05 of CAS, NSFC Project 40075029,IAP innovation project 8-2212, CAS, First Chinese Arctic Expediti
文摘Analysis on NASA Total Ozone Mapping Spectrometer (TOMS) ozone shows a clear ozone loss, ?50 DU (15% of the total ozone), over Scandinavia. Correlation analysis between the ozone loss and the east-to-west sea surface temperature (SST) contrast in the North Atlantic shows correlation coefficients ?0.96 for seasonal variation and ?0.70 for monthly mean (168 months) in 1979–1992. Correlation coefficients between the ozone loss and the surface-to-atmosphere heat fluxes are higher than ?0.87. There-fore the authors suggest that the warm Atlantic current carries energy northward to Scandina via and causes ozone loss there via the surface-to-atmosphere heating processes. Key words Ozone loss - North Atlantic - Surface heating - Scandina via This work was supported by the key project KZ951-A-205-05 of CAS, NSFC Project 40075029, IAP innovation project 8-2212, CAS, First Chinese Arctic Expedition of NOA and LAPC of IAP, CAS.