The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,un...The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,under a relatively high normal stress,normal stress and the coefficient of structural roughness are the most important factors affecting the mechanical interface characteristics. The relationship between shear stress and shear displacement of the soil-structure interface is a hyperbolic curve with high regression accuracy. Based on our experimental results,a nonlinear elastic con-stitutive model of the soil-structure interface under relatively high normal stress is established with a definite physical meaning for its parameters. The model can predict the strain hardening behavior of the soil during the shearing process. The results show an encouraging agreement with experimental data from direct shear tests.展开更多
The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandi...The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandis model is used to calculate the fracture closure due to normal stress,and the fluid flow is simulated by solving the Reynold equation.The Lagrangian particle tracking method is applied to modeling the advective transport in the fracture.The results show that the normal stress significantly affects fluid flow and solute transport in rock fractures.It causes fracture closure and creates asperity contact areas,which significantly reduces the effective hydraulic aperture and enhances flow channeling.Consequently,the reduced aperture and enhanced channeling affect travel time distributions.In particular,the enhanced channeling results in enhanced first arriving and tailing behaviors for solute transport.The fracture normal stiffness correlates linearly with the 5th and 95th percentiles of the normalized travel time.The finding from this study may help to better understand the stress-dependent solute transport processes in natural rock fractures.展开更多
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fr...The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.展开更多
Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plottin...Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very import...Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very important to handle emotions and stress coping strategies to obtain positive outcomes. Objective: To identify the most frequent emotions, as well as the adaptation strategies to the new normality faced by the students of nursing. Methods: Qualitative and phenomenological research, with the participation of 20 students from both genders in the middle term of nursing career at Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, from August to November 2021. Information was collected from a focal group for ten sessions;analysis was according to De Souza Minayo, and there was a signed informed consent letter from participants. Results: Four categories emerged with sub-categories. Category I Maximized emotions. Sub-categories: 1) Frustration, anger, disappointment;2) Personal disappointment, hopelessness, uncertainty;3) Depression. Category II Support elements close to the new normality. Sub-categories: 1) Family communication;2) Education for mental and physical health. Category III Stressing situations that exceeded the student. Sub-category: Disease in lovely ones. Category IV Stress coping strategies. Sub-categories: 1) Friends and relatives that help to get better;2) Family values. Informers pointed out to have maximized emotion, and having no self-control on its negative outcomes occurred;in addition, the situation was not favorable at home with several losses of loved ones, as well as a poor economy that threatened students to give up studies. Conclusion: Emotions facing this new normality are very important and should be attended to, their proper handling will result in a new learning of socio-emotional abilities, stress coping strategies development, better adaptation and informed decisions taken.展开更多
Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stre...Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero.展开更多
This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,ch...This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,characterized by optic nerve damage and visual field loss despite normal intraocular pressure,has long puzzled clinicians.One emerging perspective suggests that alterations in ocular blood flow,particularly within the optic nerve head,may play a pivotal role in its pathogenesis.While NTG shares commonalities with its high-tension counterpart,its unique pathogenesis and potential ties to cardiovascular health make it a fascinating subject of exploration.It navigates through the complex web of vascular dysregulation,blood pressure and perfusion pressure,neurovascular coupling,and oxidative stress,seeking to uncover the hidden threads that tie the heart and eyes together in NTG.This review explores into the intricate mechanisms connecting cardiovascular factors to NTG,shedding light on how cardiac dynamics can influence ocular health,particularly in cases where intraocular pressure remains within the normal range.NTG's enigmatic nature,often characterized by seemingly contradictory risk factors and clinical profiles,underscores the need for a holistic approach to patient care.Drawing parallels to cardiac health,we examine into the shared vascular terrain connecting the heart and the eyes.Cardiovascular factors,including systemic blood flow,endothelial dysfunction,and microcirculatory anomalies,may exert a profound influence on ocular perfusion,impacting the delicate balance within the optic nerve head.By elucidating the subtle clues and potential associations between cardiology and NTG,this review invites clinicians to consider a broader perspective in their evaluation and management of this elusive condition.As the understanding of these connections evolves,so too may the prospects for early diagnosis and tailored interventions,ultimately enhancing the quality of life for those living with NTG.展开更多
The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estim...The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estimating parameters under a normal stress.展开更多
The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential ...The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.展开更多
Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for d...Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.展开更多
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC...Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.展开更多
In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-...In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.展开更多
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform...Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.展开更多
Quantitative real-time reverse transcriptase PCR(qRT-PCR)technology has been extensively used to estimate gene expression levels,and the selection of appropriate reference genes for qRT-PCR analysis is critically impo...Quantitative real-time reverse transcriptase PCR(qRT-PCR)technology has been extensively used to estimate gene expression levels,and the selection of appropriate reference genes for qRT-PCR analysis is critically important for obtaining authentic normalized data.Acer palmatum is an important colorful leaf ornamental tree species,and reference genes suitable for normalization of the qRT-PCR data obtained from this species have not been investigated.In this study,the expression stability of ten candidate reference genes,namely,Actin3,Actin6,Actin9,EF1α,PP2A,SAMDC,TIP41,TUBα,TUBβand UBQ10,in two distinct tissues(leaves and roots)of A.palmatum under four different abiotic stress conditions(cold,heat,salt and drought)were investigated and assessed using three statistical methods(GeNorm,NormFinder and BestKeeper).The combinations of reference genes that showed stability in the different stressed samples differed.Specifically,Actin6,UBQ10 and Actin9 were the most stable reference genes in all the samples,and Actin3 and Actin6 wexre stably expressed in cold-stressed leaves and roots.Actin3,Actin6 and UBQ10 were identified as an appropriate combination of reference genes for the analysis of heat-stressed leaves and roots,whereas the combination of Actin9,UBQ10 and Actin6 was deemed the most suitable for the analysis of salt-stressed leaves and roots.Similarly,Actin6 and UBQ10 exhibited stable expression in drought-stressed leaves and roots.Furthermore,the expression levels of CBF,Cu/Zn-SOD and HsfA1 were estimated to determine the reliability of the reference genes assessed in this study.This study revealed stable reference genes in A.palmatum that might be used for the normalization of qRT-PCR data obtained under various abiotic stresses.展开更多
The bolt anchoring force is closely related to the shear properties of the anchor interface. The shear stress distribution of full-length grouted bolts is analyzed based on the stress-strain relationship among the bol...The bolt anchoring force is closely related to the shear properties of the anchor interface. The shear stress distribution of full-length grouted bolts is analyzed based on the stress-strain relationship among the bolt, grout, rock mass and bond interface,considering the shear properties of the grout and contact interface bonding behavior. In this case, the interfacial shear stress of the grout and rock mass and the bolt axial force are obtained under pull-out and normal working conditions. The results show that the peak shear stress of the interface with the shear deformation of the bond interface is significantly lower than that without it when the pull-out force is applied. When designing bolt parameters of grade IV and V rock mass, the relative deformation between the rock mass and anchor should be considered, with a “unimodal” to “bimodal” shear stress distribution.In the case of a low elastic modulus of rock masses,both the shear stress concentration and distribution range are obvious, and the neutral point is near the bolt head. As the elastic modulus increases, the shear stress concentration and distribution range are reduced, and the neutral point moves towards the distal end. As a result, the optimum length of fulllength grouted bolts can be determined by in-situ pull-out tests and decreases with the increased elastic modulus of the rock mass.展开更多
A true triaxial apparatus which is composed of three units was presented.The apparatus allows for investigations on deformation and seepage behaviors of a single rock fracture subjected to lateral stress and normal st...A true triaxial apparatus which is composed of three units was presented.The apparatus allows for investigations on deformation and seepage behaviors of a single rock fracture subjected to lateral stress and normal stress.The first unit has three jacks which can apply loads independently in three orthogonal directions.The second unit is used to supply water inflow,control seepage pressure and measure flow velocity in real time.The third unit is for measuring the normal deformation of rock fractures.Some tests for investigating the normal deformation and seepage behaviors of rock fractures subjected to normal and lateral loads on hard granite specimens with an artificial persistent fracture,were introduced.The results show that both the normal deformation and the hydraulic conductivity are influenced not only by the normal stress but also by the lateral stress.It is also shown that the aperture and the hydraulic conductivity decrease with the increasing normal stress but increase with the increasing lateral stress and both the aperture and the hydraulic conductivity obey exponential relationships with the normal stress and the lateral stress.展开更多
Normal tension glaucoma(NTG)is a multifactorial optic neuropathy characterized by normal intraocular pressure,progressive retinal ganglion cell(RGC)death,and glaucomatous visual field loss.Recent studies have describe...Normal tension glaucoma(NTG)is a multifactorial optic neuropathy characterized by normal intraocular pressure,progressive retinal ganglion cell(RGC)death,and glaucomatous visual field loss.Recent studies have described the mechanisms underlying the pathogenesis of NTG.In addition to controlling intraocular pressure,neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG.In this review,we summarized the main regulatory mechanisms of RGC death in NTG,including autophagy,glutamate neurotoxicity,oxidative stress,neuroinflammation,immunity,and vasoconstriction.Autophagy can be induced by retinal hypoxia and axonal damage.In this process,ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway.Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate,which occurs in RGCs and induces progressive glaucomatous optic neuropathy.Oxidative stress also participates in NTG-related glaucomatous optic neuropathy.It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway.Moreover,it increases inflammation and the immune response of RGCs.Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow,promoting vasospasm and glaucomatous optic neuropathy,as a result of NTG.In conclusion,we discussed research progress on potential options for the protection of RGCs,including TANK binding kinase 1 inhibitors regulating autophagy,N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity,ASK1 inhibitors regulating mitochondrial function,and antioxidants inhibiting oxidative stress.In NTG,RGC death is regulated by a network of mechanisms,while various potential targets protect RGCs.Collectively,these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.展开更多
In March 2021,a seismic sequence including three Mw>5.5 events struck northern Thessaly,Greece.Owing to the high temporal resolution of Sentinel-1 images which were sampled every 6 days and recorded the three event...In March 2021,a seismic sequence including three Mw>5.5 events struck northern Thessaly,Greece.Owing to the high temporal resolution of Sentinel-1 images which were sampled every 6 days and recorded the three events separately,we are able to map individually the coseismic deformation fields of the three events.Based on their respective coseismic displacements,we determined the geometry of the fault plane for each earthquake with the method of multipeak particle swarm optimization and inverted the best-fitting slip distribution by linear least squares inversion.Modelling results show that the three events occurred successively on 3,4 and 12 March 2021 were all dominated by normal-slip motions on previously unknown faults within the top 15 km of the Earth’s crust.The 3 March 2021 Mw 6.3 earthquake ruptured a northeast-dipping fault with a strike angle of 301°(clockwise from the North)and a dip angle of 46°,producing the maximum slip of about 2.2 m.The slip motion of the 4 March 2021 Mw 5.9 aftershock shows a similar fault geometry(striking 297°and dipping 42°)to the 3 March mainshock,but with a considerably smaller dip-slip component(~0.8 m).The 12 March 2021 Mw 5.6 aftershock occurred on a southwest-dipping fault(striking 100°and dipping 40°)with a normal fault slip of up to 0.5 m.Static Coulomb stress changes triggered by the earthquake sequence imply a promotion relationship between the first 3 March event and the two subsequent events.Due to the coseismic stress perturbation,more than 70%of aftershocks were distributed in areas with increased Coulomb stress and the northwest segment of the Larissa fault close to the seismic sequence was exposed to a relatively high seismic risk.展开更多
基金Projects 50534040 supported by the National Natural Science Foundation of China2002CB412704 by the Major State Basic Research and Development Program of China
文摘The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,under a relatively high normal stress,normal stress and the coefficient of structural roughness are the most important factors affecting the mechanical interface characteristics. The relationship between shear stress and shear displacement of the soil-structure interface is a hyperbolic curve with high regression accuracy. Based on our experimental results,a nonlinear elastic con-stitutive model of the soil-structure interface under relatively high normal stress is established with a definite physical meaning for its parameters. The model can predict the strain hardening behavior of the soil during the shearing process. The results show an encouraging agreement with experimental data from direct shear tests.
基金funding provided by the Swedish Nuclear Fuel and Waste Management Co.(SKB)。
文摘The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandis model is used to calculate the fracture closure due to normal stress,and the fluid flow is simulated by solving the Reynold equation.The Lagrangian particle tracking method is applied to modeling the advective transport in the fracture.The results show that the normal stress significantly affects fluid flow and solute transport in rock fractures.It causes fracture closure and creates asperity contact areas,which significantly reduces the effective hydraulic aperture and enhances flow channeling.Consequently,the reduced aperture and enhanced channeling affect travel time distributions.In particular,the enhanced channeling results in enhanced first arriving and tailing behaviors for solute transport.The fracture normal stiffness correlates linearly with the 5th and 95th percentiles of the normalized travel time.The finding from this study may help to better understand the stress-dependent solute transport processes in natural rock fractures.
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
基金supported by Fundamental Research Funds for the Central Universities(22dfx06)Natural Science Foundation of Guangdong Province-Joint Program for Ofshore Wind Power(2022A1515240009).
文摘The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.
文摘Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
文摘Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very important to handle emotions and stress coping strategies to obtain positive outcomes. Objective: To identify the most frequent emotions, as well as the adaptation strategies to the new normality faced by the students of nursing. Methods: Qualitative and phenomenological research, with the participation of 20 students from both genders in the middle term of nursing career at Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, from August to November 2021. Information was collected from a focal group for ten sessions;analysis was according to De Souza Minayo, and there was a signed informed consent letter from participants. Results: Four categories emerged with sub-categories. Category I Maximized emotions. Sub-categories: 1) Frustration, anger, disappointment;2) Personal disappointment, hopelessness, uncertainty;3) Depression. Category II Support elements close to the new normality. Sub-categories: 1) Family communication;2) Education for mental and physical health. Category III Stressing situations that exceeded the student. Sub-category: Disease in lovely ones. Category IV Stress coping strategies. Sub-categories: 1) Friends and relatives that help to get better;2) Family values. Informers pointed out to have maximized emotion, and having no self-control on its negative outcomes occurred;in addition, the situation was not favorable at home with several losses of loved ones, as well as a poor economy that threatened students to give up studies. Conclusion: Emotions facing this new normality are very important and should be attended to, their proper handling will result in a new learning of socio-emotional abilities, stress coping strategies development, better adaptation and informed decisions taken.
基金This research was funded by the Fundamental Research Funds for the Central Universities,CHD(Grant Nos.300102210307 and 300102210308)the National Natural Science Foundation of China(Grant Nos.41831286 and 41972297)the Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-369).
文摘Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero.
文摘This comprehensive review embarks on a captivating journey into the complex relationship between cardiology and normal-tension glaucoma(NTG),a condition that continues to baffle clinicians and researchers alike.NTG,characterized by optic nerve damage and visual field loss despite normal intraocular pressure,has long puzzled clinicians.One emerging perspective suggests that alterations in ocular blood flow,particularly within the optic nerve head,may play a pivotal role in its pathogenesis.While NTG shares commonalities with its high-tension counterpart,its unique pathogenesis and potential ties to cardiovascular health make it a fascinating subject of exploration.It navigates through the complex web of vascular dysregulation,blood pressure and perfusion pressure,neurovascular coupling,and oxidative stress,seeking to uncover the hidden threads that tie the heart and eyes together in NTG.This review explores into the intricate mechanisms connecting cardiovascular factors to NTG,shedding light on how cardiac dynamics can influence ocular health,particularly in cases where intraocular pressure remains within the normal range.NTG's enigmatic nature,often characterized by seemingly contradictory risk factors and clinical profiles,underscores the need for a holistic approach to patient care.Drawing parallels to cardiac health,we examine into the shared vascular terrain connecting the heart and the eyes.Cardiovascular factors,including systemic blood flow,endothelial dysfunction,and microcirculatory anomalies,may exert a profound influence on ocular perfusion,impacting the delicate balance within the optic nerve head.By elucidating the subtle clues and potential associations between cardiology and NTG,this review invites clinicians to consider a broader perspective in their evaluation and management of this elusive condition.As the understanding of these connections evolves,so too may the prospects for early diagnosis and tailored interventions,ultimately enhancing the quality of life for those living with NTG.
文摘The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estimating parameters under a normal stress.
基金supported by National Nature Science Foundation of China (Grant No.42177157)the Science and Technology Program of Liaoning Province (Grant No.2023JH1/10400003)the Applied Basic Research Programof Liaoning Province (Grant No.2023JH2/101300153).
文摘The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.
基金Project(10572141) supported by the National Natural Science Foundation of China
文摘Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
文摘Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.
基金Project(51608541)supported by the National Natural Science Foundation of ChinaProject(2015M580702)supported by the Postdoctoral Science Foundation of ChinaProject(201508)supported by the Postdoctoral Science Foundation of Central South University,China
文摘In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.
基金The authors would like to thank the Iranian Nanotechnology Development Committee for their financial support.
文摘Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.
基金This work is supported by the National Natural Science Foundation of China(31700628)Natural Science Foundation of Jiangsu Province(BK20170602)Jiangsu Agriculture Science and Technology Innovation Fund(CX(17)1004).
文摘Quantitative real-time reverse transcriptase PCR(qRT-PCR)technology has been extensively used to estimate gene expression levels,and the selection of appropriate reference genes for qRT-PCR analysis is critically important for obtaining authentic normalized data.Acer palmatum is an important colorful leaf ornamental tree species,and reference genes suitable for normalization of the qRT-PCR data obtained from this species have not been investigated.In this study,the expression stability of ten candidate reference genes,namely,Actin3,Actin6,Actin9,EF1α,PP2A,SAMDC,TIP41,TUBα,TUBβand UBQ10,in two distinct tissues(leaves and roots)of A.palmatum under four different abiotic stress conditions(cold,heat,salt and drought)were investigated and assessed using three statistical methods(GeNorm,NormFinder and BestKeeper).The combinations of reference genes that showed stability in the different stressed samples differed.Specifically,Actin6,UBQ10 and Actin9 were the most stable reference genes in all the samples,and Actin3 and Actin6 wexre stably expressed in cold-stressed leaves and roots.Actin3,Actin6 and UBQ10 were identified as an appropriate combination of reference genes for the analysis of heat-stressed leaves and roots,whereas the combination of Actin9,UBQ10 and Actin6 was deemed the most suitable for the analysis of salt-stressed leaves and roots.Similarly,Actin6 and UBQ10 exhibited stable expression in drought-stressed leaves and roots.Furthermore,the expression levels of CBF,Cu/Zn-SOD and HsfA1 were estimated to determine the reliability of the reference genes assessed in this study.This study revealed stable reference genes in A.palmatum that might be used for the normalization of qRT-PCR data obtained under various abiotic stresses.
基金funded by the Natural Science Foundation of China(Grants Nos.52179113,42207199,41831278)。
文摘The bolt anchoring force is closely related to the shear properties of the anchor interface. The shear stress distribution of full-length grouted bolts is analyzed based on the stress-strain relationship among the bolt, grout, rock mass and bond interface,considering the shear properties of the grout and contact interface bonding behavior. In this case, the interfacial shear stress of the grout and rock mass and the bolt axial force are obtained under pull-out and normal working conditions. The results show that the peak shear stress of the interface with the shear deformation of the bond interface is significantly lower than that without it when the pull-out force is applied. When designing bolt parameters of grade IV and V rock mass, the relative deformation between the rock mass and anchor should be considered, with a “unimodal” to “bimodal” shear stress distribution.In the case of a low elastic modulus of rock masses,both the shear stress concentration and distribution range are obvious, and the neutral point is near the bolt head. As the elastic modulus increases, the shear stress concentration and distribution range are reduced, and the neutral point moves towards the distal end. As a result, the optimum length of fulllength grouted bolts can be determined by in-situ pull-out tests and decreases with the increased elastic modulus of the rock mass.
基金Projects(50809069,10872207) supported by the National Natural Science Foundation of ChinaProject(2009CAD017) supported by Outstanding Youth of Hubei Province,China
文摘A true triaxial apparatus which is composed of three units was presented.The apparatus allows for investigations on deformation and seepage behaviors of a single rock fracture subjected to lateral stress and normal stress.The first unit has three jacks which can apply loads independently in three orthogonal directions.The second unit is used to supply water inflow,control seepage pressure and measure flow velocity in real time.The third unit is for measuring the normal deformation of rock fractures.Some tests for investigating the normal deformation and seepage behaviors of rock fractures subjected to normal and lateral loads on hard granite specimens with an artificial persistent fracture,were introduced.The results show that both the normal deformation and the hydraulic conductivity are influenced not only by the normal stress but also by the lateral stress.It is also shown that the aperture and the hydraulic conductivity decrease with the increasing normal stress but increase with the increasing lateral stress and both the aperture and the hydraulic conductivity obey exponential relationships with the normal stress and the lateral stress.
基金supported in part by the Technology Foundation of Tianjin Eye Hospital of China, No. YKQN1911 (to WCS)Tianjin Health Science and Technology Project, No. TJWJ2021QN071 (to WCS)Translational Medicine Research Project of State Key Laboratory of Experimental Hematology of China, No. Z21-11 (to BQH)
文摘Normal tension glaucoma(NTG)is a multifactorial optic neuropathy characterized by normal intraocular pressure,progressive retinal ganglion cell(RGC)death,and glaucomatous visual field loss.Recent studies have described the mechanisms underlying the pathogenesis of NTG.In addition to controlling intraocular pressure,neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG.In this review,we summarized the main regulatory mechanisms of RGC death in NTG,including autophagy,glutamate neurotoxicity,oxidative stress,neuroinflammation,immunity,and vasoconstriction.Autophagy can be induced by retinal hypoxia and axonal damage.In this process,ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway.Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate,which occurs in RGCs and induces progressive glaucomatous optic neuropathy.Oxidative stress also participates in NTG-related glaucomatous optic neuropathy.It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway.Moreover,it increases inflammation and the immune response of RGCs.Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow,promoting vasospasm and glaucomatous optic neuropathy,as a result of NTG.In conclusion,we discussed research progress on potential options for the protection of RGCs,including TANK binding kinase 1 inhibitors regulating autophagy,N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity,ASK1 inhibitors regulating mitochondrial function,and antioxidants inhibiting oxidative stress.In NTG,RGC death is regulated by a network of mechanisms,while various potential targets protect RGCs.Collectively,these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
基金National Key Research and Development Program of China(No.2019YFC1509201)Chinese Scholarship Council Studentship(No.201806270247)+3 种基金Shaanxi Province Science and Technology Innovation Team(No.2021TD-51)UK Natural Environment Research Council through the Centre for the Observation and Modeling of Earthquakes,Volcanoes and Tectonics(No.come30001)LICS Project(No.NE/K010794/1)European Space Agency through the ESA-MOST DRAGON-5 Project(No.59339)。
文摘In March 2021,a seismic sequence including three Mw>5.5 events struck northern Thessaly,Greece.Owing to the high temporal resolution of Sentinel-1 images which were sampled every 6 days and recorded the three events separately,we are able to map individually the coseismic deformation fields of the three events.Based on their respective coseismic displacements,we determined the geometry of the fault plane for each earthquake with the method of multipeak particle swarm optimization and inverted the best-fitting slip distribution by linear least squares inversion.Modelling results show that the three events occurred successively on 3,4 and 12 March 2021 were all dominated by normal-slip motions on previously unknown faults within the top 15 km of the Earth’s crust.The 3 March 2021 Mw 6.3 earthquake ruptured a northeast-dipping fault with a strike angle of 301°(clockwise from the North)and a dip angle of 46°,producing the maximum slip of about 2.2 m.The slip motion of the 4 March 2021 Mw 5.9 aftershock shows a similar fault geometry(striking 297°and dipping 42°)to the 3 March mainshock,but with a considerably smaller dip-slip component(~0.8 m).The 12 March 2021 Mw 5.6 aftershock occurred on a southwest-dipping fault(striking 100°and dipping 40°)with a normal fault slip of up to 0.5 m.Static Coulomb stress changes triggered by the earthquake sequence imply a promotion relationship between the first 3 March event and the two subsequent events.Due to the coseismic stress perturbation,more than 70%of aftershocks were distributed in areas with increased Coulomb stress and the northwest segment of the Larissa fault close to the seismic sequence was exposed to a relatively high seismic risk.