The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental...The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.展开更多
In this study, the interaction between cylindrical specimen made ofhomogeneous, isotropic, and linearlyelastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed thatthe spec...In this study, the interaction between cylindrical specimen made ofhomogeneous, isotropic, and linearlyelastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed thatthe specimen is diametrically compressed by elliptic normal contact stresses. The frictional contactstresses between the specimen and platens are neglected. The analytical solution starts from the contactproblem of the loading jaws of any curvature and cylindrical specimen. The contact width, correspondingloading angle (2 ^0), and elliptical stresses obtained through solution of the contact problems are used asboundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder issolved using Muskhelishvili's method. In this method, the displacements and stresses are represented interms of two analytical functions of a complex variable. In the main approaches, the nonlinear interactionbetween the loading bearing blocks and the specimen as well as the curvature of their surfacesand the elastic parameters of their materials are taken into account. Numerical examples are solved usingMATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on thedistribution of the normal contact stresses as well as on the tensile and compressive stresses actingacross the loaded diameter. Derived equations also allow calculating the modulus of elasticity, totaldeformation modulus and creep parameters of the specimen material based on the experimental data ofradial contraction of the specimen.展开更多
The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the ...The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the self-developed direct tension device and creep testing machine RLW-2000M are used to conduct the creep tests on red sandstone under uniaxial compressive and tensile stresses. The short-term and long-term creep behaviors of rocks under compressive and tensile stresses are investigated, as well as the long-term strength of rocks. It is shown that, under low-stress levels, the creep curve of sandstone consists of decay and steady creep stages; while under high-stress levels, it presents the accelerated creep stage and creep fracture presents characteristics of brittle materials. The relationship between tensile stress and time under uniaxial tension is also put forward. Finally, a nonlinear viscoelastoplastic creep model is used to describe the creep behaviors of rocks under uniaxial compressive and tensile stresses.展开更多
For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconduc...For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconducting layer in a working magnet can cause transverse tensile stress, which would result in delamination behavior. Therefore many research groups have designed experiments to measure the delamination strength and dedicate to improving that. However, the reason of the discrete distribution of measured data has still not get quantitatively studied, besides, there are lack of investigations on the method of changing depositing conditions to improve the delamination strength except by adding an additional metal layer. In this work, we adopt an anvil test device and obtain delamination strengths as 29.6 MPa of YBa2Cu3O7-x (YBCO)/buffer and 114.6 MPa of buffer/substrate by combing energy disperse spectroscopy (EDS) detection. The reason of discretized measurement data on the delamination strength is explained. Moreover, we find that different temperatures during Ag deposition determine the bonding force of Ag and YBCO layer. The Delamination strength between Ag and YBCO layer increases from 4.4 MPa to larger than 114.6 MPa with temperature elevated from 30℃ to 100℃. Hence we present a novel method for improving the delamination strength of YBCO CCs by setting an optimal temperature of Ag deposition.展开更多
The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate on...The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.展开更多
In order to explore the quantitative method of metal magnetic memory testing(MMMT) and clarify the relationship between Hp(y), the normal component of spontaneous stray field, and applied stress or residual stress...In order to explore the quantitative method of metal magnetic memory testing(MMMT) and clarify the relationship between Hp(y), the normal component of spontaneous stray field, and applied stress or residual stress, the static tensile tests of 0.45%C steel sheet specimens are carried out on a servo hydraulic MTS810 machine. Hp(y) values are measured during the test process by an EMS-2003 metal magnetic memory diagnostic apparatus and a non-magnetic electric control displacement instrument. Residual stresses of some points on the surface of a specimen are measured by a Stress Tech X-Stress 3000 X-ray diffraction instrument. The results show that the same variation rules of Hp(y) value versus applied tensile stress are presented under the different conditions of load-on and load-off. However, the same rule does not exist between the Hp(y) value and residual stress. The variation of Hp(y) value reflects the history of applied tensile stress.展开更多
The α-Ti foil with protective layer in one side bended to corrosion surface gradually during corrosion process in 0.1 mol/L H2SO4, while the passive film was formed, i.e., a tensile stress was developed in the surfac...The α-Ti foil with protective layer in one side bended to corrosion surface gradually during corrosion process in 0.1 mol/L H2SO4, while the passive film was formed, i.e., a tensile stress was developed in the surface layer of the sample. The extra tensile Stress grew gradually, whose maximum value is =313 MPa (average of 5 samples), which is near or reaches the yield stress. The extra tensile stress would be added to the load Stress during SCC to facilitate the emission and motion of dislocation, so that SCC cracks could nucleate in lower Stress(or lower KI).展开更多
The corrosion behaviors of 1420 and 2195 Al-Li alloys under 308 and 490 MPa tensile stress respectively in neutral 3.5% NaCl solution were investigated using electrochemical impedance spectroscopy(EIS) and scanning el...The corrosion behaviors of 1420 and 2195 Al-Li alloys under 308 and 490 MPa tensile stress respectively in neutral 3.5% NaCl solution were investigated using electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM). It is found that the unstressed 1420 alloy is featured with large and discrete pits, while general corrosion and localized corrosion including intergranular corrosion and pitting corrosion occur on the unstressed 2195 alloy. As stress is applied to 1420 alloy, the pit becomes denser and its size is decreased. While, for the stressed 2195 alloy, intergranular corrosion is greatly aggravated and severe general corrosion is developed from connected pits. The EIS analysis shows that more severe general corrosion and localized corrosion occur on the stressed 2195 Al-Li alloy than on 1420 Al-Li alloy. It is suggested that tensile stress has greater effect on the corrosion of 2195 Al-Li alloy than on 1420 Al-Li alloy.展开更多
Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled ten...Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manual-controlled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.展开更多
<span style="font-family:Verdana;">In Nigeria, most welding activities are carried out by road side welders, majority of this welders are ignorant of weld residual stress and its adverse effect on weld...<span style="font-family:Verdana;">In Nigeria, most welding activities are carried out by road side welders, majority of this welders are ignorant of weld residual stress and its adverse effect on weldment. Residual stress (RS) measuring device </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> vital in the measurement of inherent stresses in material. The aim of this research was to employ proof of principle in analyzing the weld residual stresses in a material. This was achieved by measuring samples with magnetic residual stress device and then subjecting the weld samples to mechanical tensile test with hope that materials with more residual stresses fail first. Finally the result from both procedures w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> compared to establish </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">relationship</span><span style="font-family:""><span style="font-family:Verdana;">. Four (4) pieces of mild steel coupons measuring 100 × 40 × 3 mm were welded, producing two specimens, A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> of 200 × 40 × 3 mm</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> respectively. The specimens were measured using the Magnetic device developed and 37 signals were obtained per specimen, thereafter, the welded specimens were subjected to tensile testing and results analyzed. From the results obtained, Specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> was observed to have the highest signal peak at the weld zone with RS signal of 20.3983 mV compared to B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> with 19.358 mV. While under tensile loading, it took 1.63 kN to cause failure to specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and 8.65 kN for specimen B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;">. From this simple experiment, it implies that the Magnetic RS device was able to mimic the behavior of residual stress and also predicted that A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> would fail first.展开更多
Theoretical and experimental research has been performed on the interaction curves and stress paths of crystalline polymeric materials PE and POM under tensile-torsional stress with a linearly intensifying model and i...Theoretical and experimental research has been performed on the interaction curves and stress paths of crystalline polymeric materials PE and POM under tensile-torsional stress with a linearly intensifying model and in terms of the yield points undergoing Von Mises criterion.展开更多
In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear lo...In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.展开更多
The effect of tensile stress and trace amounts of impurities on the creep activation energyof platinum was studied and the creep mechanism was disscussed.
Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T ...Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T and η'S which derived from both original state of the alloy, and a phase transformation, αf +ε→T' +η, in both furnace cooled and as-cast eutectoid Zn-Al alloys. Also spheroidized structure formed partially during tensile testing. Superplasticity of the alloy has been discussed correlating with the phase transformations and microstructural changes.展开更多
The effect of tensile stress on thermal microstructure evolution of Ω phase in an Al-Cu-Mg-Ag alloy with high Cu/Mg ratio and higher Ag content was investigated by transmission electron microcopy(TEM) .The samples we...The effect of tensile stress on thermal microstructure evolution of Ω phase in an Al-Cu-Mg-Ag alloy with high Cu/Mg ratio and higher Ag content was investigated by transmission electron microcopy(TEM) .The samples were aged at 200 ℃ for 1 h(T6 condition),then thermal exposed at 250 ℃ for 100 h with and without a tensile stress(130 MPa),respectively. The results indicate that Ω precipitates uniformly disperse in the matrix as a major precipitate after artificially aging at 200 ℃ for 1 h(T6 condition). Exposed at 250 ℃ for 100 h without stress,Ω precipitates dissolve dramatically. Whereas,during stress exposure they coarsen unexpectedly rather than dissolve into matrix. It can be deduced that the stress retards the redissolution of Ω phase.展开更多
A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of te...A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.展开更多
The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irr...The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results.展开更多
Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s...Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s-1 were applied to study deformation mechanisms. The experimental data show that the material exhibits enhanced tensile ductilities of over 100% at 400 and 450 ℃ with stress exponent of 4.29 and activation energy of 149.60 kJ/mol, and initial fine grains preserve in evenly deformed gauge based on microstructure studies. The enhanced tensile ductilities are rate controlled by a competitive mechanism of grain boundary sliding and dislocation climb creep, based on which a model can successfully simulate the deformation behavior.展开更多
This paper presents an experimental study to determine the tensile properties of the envelope fabric Uretek3216L under biaxial cyclic loading.First the biaxial cyclic tests were carefully carried out on the envelope m...This paper presents an experimental study to determine the tensile properties of the envelope fabric Uretek3216L under biaxial cyclic loading.First the biaxial cyclic tests were carefully carried out on the envelope material to obtain the stress-strain data and the corresponding nonlinearity and orthotropy of the material were analyzed. Then for some determination options with different stress ratios the least squares method minimizing the strain terms was used to calculate the elastic constants from the experimental data.Finally the influences of the determination options with different stress ratios and the reciprocal relationship on the elastic constants were discussed.Results show that the orthotropy of the envelope material can be attributed to the unbalanced crimp of their constitutive yarns in warp and weft directions and the elastic constants vary noticeably with the determination options as well as the normalized stress ratios.In real design practice it is more reasonable to use constants determined for specific stress states in particular stress ratios depending on the project&#39;s needs.Also calculating the structures with two limitative sets of elastic constants instead of using only one set is recommendable in light of the great variety of the constant&#39;s values.展开更多
Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200...Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures.展开更多
文摘The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.
文摘In this study, the interaction between cylindrical specimen made ofhomogeneous, isotropic, and linearlyelastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed thatthe specimen is diametrically compressed by elliptic normal contact stresses. The frictional contactstresses between the specimen and platens are neglected. The analytical solution starts from the contactproblem of the loading jaws of any curvature and cylindrical specimen. The contact width, correspondingloading angle (2 ^0), and elliptical stresses obtained through solution of the contact problems are used asboundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder issolved using Muskhelishvili's method. In this method, the displacements and stresses are represented interms of two analytical functions of a complex variable. In the main approaches, the nonlinear interactionbetween the loading bearing blocks and the specimen as well as the curvature of their surfacesand the elastic parameters of their materials are taken into account. Numerical examples are solved usingMATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on thedistribution of the normal contact stresses as well as on the tensile and compressive stresses actingacross the loaded diameter. Derived equations also allow calculating the modulus of elasticity, totaldeformation modulus and creep parameters of the specimen material based on the experimental data ofradial contraction of the specimen.
基金Supported by the West Region Communication Construction Technology Project of the Ministry of Communications (2009318000001)the National Natural Science Foundation of China (50808187)
文摘The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the self-developed direct tension device and creep testing machine RLW-2000M are used to conduct the creep tests on red sandstone under uniaxial compressive and tensile stresses. The short-term and long-term creep behaviors of rocks under compressive and tensile stresses are investigated, as well as the long-term strength of rocks. It is shown that, under low-stress levels, the creep curve of sandstone consists of decay and steady creep stages; while under high-stress levels, it presents the accelerated creep stage and creep fracture presents characteristics of brittle materials. The relationship between tensile stress and time under uniaxial tension is also put forward. Finally, a nonlinear viscoelastoplastic creep model is used to describe the creep behaviors of rocks under uniaxial compressive and tensile stresses.
基金supported by the National Natural Science Foundation of China(Grants 11622217 and 11872196)the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(Grants lzujbky-2017-ot18,lzujbky-2017-k18,and lzujbky-2018-9)
文摘For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconducting layer in a working magnet can cause transverse tensile stress, which would result in delamination behavior. Therefore many research groups have designed experiments to measure the delamination strength and dedicate to improving that. However, the reason of the discrete distribution of measured data has still not get quantitatively studied, besides, there are lack of investigations on the method of changing depositing conditions to improve the delamination strength except by adding an additional metal layer. In this work, we adopt an anvil test device and obtain delamination strengths as 29.6 MPa of YBa2Cu3O7-x (YBCO)/buffer and 114.6 MPa of buffer/substrate by combing energy disperse spectroscopy (EDS) detection. The reason of discretized measurement data on the delamination strength is explained. Moreover, we find that different temperatures during Ag deposition determine the bonding force of Ag and YBCO layer. The Delamination strength between Ag and YBCO layer increases from 4.4 MPa to larger than 114.6 MPa with temperature elevated from 30℃ to 100℃. Hence we present a novel method for improving the delamination strength of YBCO CCs by setting an optimal temperature of Ag deposition.
文摘The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.
基金This project is supported by National Natural Science Foundation of China (No.50235030,No.50505052).
文摘In order to explore the quantitative method of metal magnetic memory testing(MMMT) and clarify the relationship between Hp(y), the normal component of spontaneous stray field, and applied stress or residual stress, the static tensile tests of 0.45%C steel sheet specimens are carried out on a servo hydraulic MTS810 machine. Hp(y) values are measured during the test process by an EMS-2003 metal magnetic memory diagnostic apparatus and a non-magnetic electric control displacement instrument. Residual stresses of some points on the surface of a specimen are measured by a Stress Tech X-Stress 3000 X-ray diffraction instrument. The results show that the same variation rules of Hp(y) value versus applied tensile stress are presented under the different conditions of load-on and load-off. However, the same rule does not exist between the Hp(y) value and residual stress. The variation of Hp(y) value reflects the history of applied tensile stress.
文摘The α-Ti foil with protective layer in one side bended to corrosion surface gradually during corrosion process in 0.1 mol/L H2SO4, while the passive film was formed, i.e., a tensile stress was developed in the surface layer of the sample. The extra tensile Stress grew gradually, whose maximum value is =313 MPa (average of 5 samples), which is near or reaches the yield stress. The extra tensile stress would be added to the load Stress during SCC to facilitate the emission and motion of dislocation, so that SCC cracks could nucleate in lower Stress(or lower KI).
基金Project(50401012) supported by the National Natural Science Foundation of China
文摘The corrosion behaviors of 1420 and 2195 Al-Li alloys under 308 and 490 MPa tensile stress respectively in neutral 3.5% NaCl solution were investigated using electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM). It is found that the unstressed 1420 alloy is featured with large and discrete pits, while general corrosion and localized corrosion including intergranular corrosion and pitting corrosion occur on the unstressed 2195 alloy. As stress is applied to 1420 alloy, the pit becomes denser and its size is decreased. While, for the stressed 2195 alloy, intergranular corrosion is greatly aggravated and severe general corrosion is developed from connected pits. The EIS analysis shows that more severe general corrosion and localized corrosion occur on the stressed 2195 Al-Li alloy than on 1420 Al-Li alloy. It is suggested that tensile stress has greater effect on the corrosion of 2195 Al-Li alloy than on 1420 Al-Li alloy.
文摘Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manual-controlled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.
文摘<span style="font-family:Verdana;">In Nigeria, most welding activities are carried out by road side welders, majority of this welders are ignorant of weld residual stress and its adverse effect on weldment. Residual stress (RS) measuring device </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> vital in the measurement of inherent stresses in material. The aim of this research was to employ proof of principle in analyzing the weld residual stresses in a material. This was achieved by measuring samples with magnetic residual stress device and then subjecting the weld samples to mechanical tensile test with hope that materials with more residual stresses fail first. Finally the result from both procedures w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> compared to establish </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">relationship</span><span style="font-family:""><span style="font-family:Verdana;">. Four (4) pieces of mild steel coupons measuring 100 × 40 × 3 mm were welded, producing two specimens, A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> of 200 × 40 × 3 mm</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> respectively. The specimens were measured using the Magnetic device developed and 37 signals were obtained per specimen, thereafter, the welded specimens were subjected to tensile testing and results analyzed. From the results obtained, Specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> was observed to have the highest signal peak at the weld zone with RS signal of 20.3983 mV compared to B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> with 19.358 mV. While under tensile loading, it took 1.63 kN to cause failure to specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and 8.65 kN for specimen B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;">. From this simple experiment, it implies that the Magnetic RS device was able to mimic the behavior of residual stress and also predicted that A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> would fail first.
文摘Theoretical and experimental research has been performed on the interaction curves and stress paths of crystalline polymeric materials PE and POM under tensile-torsional stress with a linearly intensifying model and in terms of the yield points undergoing Von Mises criterion.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 20404008, 50533050 and 20490220)This work was subsidized by the Special Funds for Major State Basic Research Projects of China (No. 2003CB615600).
文摘In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.
基金Supported by the National Natural Science Foundation of China
文摘The effect of tensile stress and trace amounts of impurities on the creep activation energyof platinum was studied and the creep mechanism was disscussed.
文摘Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T and η'S which derived from both original state of the alloy, and a phase transformation, αf +ε→T' +η, in both furnace cooled and as-cast eutectoid Zn-Al alloys. Also spheroidized structure formed partially during tensile testing. Superplasticity of the alloy has been discussed correlating with the phase transformations and microstructural changes.
基金Project(2005CB623705-04) supported by the National Basic Research Program of China
文摘The effect of tensile stress on thermal microstructure evolution of Ω phase in an Al-Cu-Mg-Ag alloy with high Cu/Mg ratio and higher Ag content was investigated by transmission electron microcopy(TEM) .The samples were aged at 200 ℃ for 1 h(T6 condition),then thermal exposed at 250 ℃ for 100 h with and without a tensile stress(130 MPa),respectively. The results indicate that Ω precipitates uniformly disperse in the matrix as a major precipitate after artificially aging at 200 ℃ for 1 h(T6 condition). Exposed at 250 ℃ for 100 h without stress,Ω precipitates dissolve dramatically. Whereas,during stress exposure they coarsen unexpectedly rather than dissolve into matrix. It can be deduced that the stress retards the redissolution of Ω phase.
文摘A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.
文摘The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results.
基金Project(50801034)supported by the National Natural Science Foundation of ChinaProject(LJQ 2011026)supported by Development Foundation for Excellent Young Scholars in Universities of Liaoning Province,ChinaProject(2006207)supported by Foundation for "Ten-Hundred-Thousand" High-end Talent Introduction Project in Liaoning Province,China
文摘Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s-1 were applied to study deformation mechanisms. The experimental data show that the material exhibits enhanced tensile ductilities of over 100% at 400 and 450 ℃ with stress exponent of 4.29 and activation energy of 149.60 kJ/mol, and initial fine grains preserve in evenly deformed gauge based on microstructure studies. The enhanced tensile ductilities are rate controlled by a competitive mechanism of grain boundary sliding and dislocation climb creep, based on which a model can successfully simulate the deformation behavior.
基金The National Natural Science Foundation of China(No.51278299,50878128)
文摘This paper presents an experimental study to determine the tensile properties of the envelope fabric Uretek3216L under biaxial cyclic loading.First the biaxial cyclic tests were carefully carried out on the envelope material to obtain the stress-strain data and the corresponding nonlinearity and orthotropy of the material were analyzed. Then for some determination options with different stress ratios the least squares method minimizing the strain terms was used to calculate the elastic constants from the experimental data.Finally the influences of the determination options with different stress ratios and the reciprocal relationship on the elastic constants were discussed.Results show that the orthotropy of the envelope material can be attributed to the unbalanced crimp of their constitutive yarns in warp and weft directions and the elastic constants vary noticeably with the determination options as well as the normalized stress ratios.In real design practice it is more reasonable to use constants determined for specific stress states in particular stress ratios depending on the project&#39;s needs.Also calculating the structures with two limitative sets of elastic constants instead of using only one set is recommendable in light of the great variety of the constant&#39;s values.
文摘Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures.