In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b...In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.展开更多
This paper firstly analyzes the property of the low frequency electromagnetic wave, which can penetrate many types of non-metallic materials, and the ability of Ultra-Wide Band (UWB) impulse signal which has high rang...This paper firstly analyzes the property of the low frequency electromagnetic wave, which can penetrate many types of non-metallic materials, and the ability of Ultra-Wide Band (UWB) impulse signal which has high range resolution. Then the methods are discussed for conducting surveillance through walls, detecting and locating the moving persons behind the partitions. The schematic diagram of Through-Wall Detecting Radar (TWDR) and the models of moving target are shown and the principle of detecting the moving target is also provided with coherent superimposing technique on a range gate. Finally an algorithm for estimating the location of targets is given. The performance of TWDR is validated by the experiments of penetrating a wood block, a red brick wall and a reinforced concrete wall.展开更多
文摘In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.
基金Supported by the National 863 Program (No.2001AA132020).
文摘This paper firstly analyzes the property of the low frequency electromagnetic wave, which can penetrate many types of non-metallic materials, and the ability of Ultra-Wide Band (UWB) impulse signal which has high range resolution. Then the methods are discussed for conducting surveillance through walls, detecting and locating the moving persons behind the partitions. The schematic diagram of Through-Wall Detecting Radar (TWDR) and the models of moving target are shown and the principle of detecting the moving target is also provided with coherent superimposing technique on a range gate. Finally an algorithm for estimating the location of targets is given. The performance of TWDR is validated by the experiments of penetrating a wood block, a red brick wall and a reinforced concrete wall.