期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A TRANSFER FORECASTING MODEL FOR CONTAINER THROUGHPUT GUIDED BY DISCRETE PSO 被引量:4
1
作者 XIAO Jin XIAO Yi +1 位作者 FU Julei LAI Kin Keung 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期181-192,共12页
Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete par... Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete particle swarm optimization algorithm (TF-DPSO). It firstly transfers some related time series in source domain to assist in modeling the target time series by transfer learning technique, and then constructs the forecasting model by a pattern matching method called analog complexing. Finally, the discrete particle swarm optimization algorithm is introduced to find the optimal match between the two important parameters in TF-DPSO. The container throughput time series of two im portant ports in China, Shanghai Port and Ningbo Port are used for empirical analysis, and the results show the effectiveness of the proposed model. 展开更多
关键词 Analog complexing container throughput forecasting discrete particle swarm optimiza-tion transfer forecasting model.
原文传递
Forecasting Container Throughput of Qingdao Port with a Hybrid Model 被引量:10
2
作者 HUANG Anqiang LAI Kinkeung +1 位作者 LI Yinhua WANG Shouyang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第1期105-121,共17页
This paper proposes a hybrid forecasting method to forecast container throughput of Qingdao Port.To eliminate the influence of outliers,local outlier factor(lof) is extended to detect outliers in time series,and then ... This paper proposes a hybrid forecasting method to forecast container throughput of Qingdao Port.To eliminate the influence of outliers,local outlier factor(lof) is extended to detect outliers in time series,and then different dummy variables are constructed to capture the effect of outliers based on domain knowledge.Next,a hybrid forecasting model combining projection pursuit regression(PPR) and genetic programming(GP) algorithm is proposed.Finally,the hybrid model is applied to forecasting container throughput of Qingdao Port and the results show that the proposed method significantly outperforms ANN,SARIMA,and PPR models. 展开更多
关键词 Container throughput forecast genetic programming algorithm outlier processing projection pursuit regression.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部