To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
Collinear libration points play an important role in deep space exploration because of their special positions and dynamical characteristics. Since motion around them is unstable, we need to control the spacecraft if ...Collinear libration points play an important role in deep space exploration because of their special positions and dynamical characteristics. Since motion around them is unstable, we need to control the spacecraft if we wish to keep them around such a libration point for a long time. Here we propose a continuous low-thrust control strategy, illustrated with numerical simulations combined with the orbit design and control of the World Space Observatory/UltraViolet (WSO/UV).展开更多
To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a ...To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.
基金Supported by the National Natural Science Foundation of China.
文摘Collinear libration points play an important role in deep space exploration because of their special positions and dynamical characteristics. Since motion around them is unstable, we need to control the spacecraft if we wish to keep them around such a libration point for a long time. Here we propose a continuous low-thrust control strategy, illustrated with numerical simulations combined with the orbit design and control of the World Space Observatory/UltraViolet (WSO/UV).
文摘To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall.