In the paper, a solution of one dimensional fore region pressure build up is put forward. The performance of spring supported thrust bearing is carried out with 3 dimensional thermo elasto hydrodynamic (TEHD) lub...In the paper, a solution of one dimensional fore region pressure build up is put forward. The performance of spring supported thrust bearing is carried out with 3 dimensional thermo elasto hydrodynamic (TEHD) lubrication theory inclusive of inlet pressure build up, thermal elastic distortion of pad and thermal effect. The effects of fore region pressure build up and the variation of some operating conditions on the performance of the pad are studied.展开更多
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru...Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.展开更多
In hydrodynamic bearings traditional bearing alloys:Babbitts and bronzes are most frequently utilized.Polymer sliding layers are sometimes applied as a valuable alternative.Hard diamond-like carbon(DLC)coatings,which ...In hydrodynamic bearings traditional bearing alloys:Babbitts and bronzes are most frequently utilized.Polymer sliding layers are sometimes applied as a valuable alternative.Hard diamond-like carbon(DLC)coatings,which are also considered for certain applications may show some advantages,as well.Although material selection is of secondary importance in a full film lubrication regime it becomes important in mixed friction conditions,which is crucial for bearings with frequent starts and stops.Experimental research aimed at studying the performance of fluid film bearings in the specific operating regime,including the transition to mixed friction,is described in the paper.The tests were carried out on four tilting pad bearings of different material compositions:Steel/bronze,DLC/steel,steel/polyether ether ketone(PEEK),and steel/Babbitt.The tests comprised stopping under load and reproduction of the Stribeck curve by decreasing rotational speed to very low values,and observing the changes of friction force during the transition to mixed friction regime.Analysis of the transition conditions and other results showed clear differences between the tested bearings,illustrating the feasibility of less popular material compositions for bearings operating in specific conditions.More specifically,the DLC/steel bearing was demonstrating superior performance,i.e.lower friction,transition to mixed friction occurring at higher load,and more stable performance at start-stop regime over the other tested bearings.展开更多
文摘In the paper, a solution of one dimensional fore region pressure build up is put forward. The performance of spring supported thrust bearing is carried out with 3 dimensional thermo elasto hydrodynamic (TEHD) lubrication theory inclusive of inlet pressure build up, thermal elastic distortion of pad and thermal effect. The effects of fore region pressure build up and the variation of some operating conditions on the performance of the pad are studied.
基金Supported by the Natural Science Foundation of China under Grant No.50675162the Program of Introducing Talents of Discipline to Universities under Grant No.B08031the Key Project of Hubei Province Science & Technology Fund under Grant No.2008CAD027
文摘Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.
文摘In hydrodynamic bearings traditional bearing alloys:Babbitts and bronzes are most frequently utilized.Polymer sliding layers are sometimes applied as a valuable alternative.Hard diamond-like carbon(DLC)coatings,which are also considered for certain applications may show some advantages,as well.Although material selection is of secondary importance in a full film lubrication regime it becomes important in mixed friction conditions,which is crucial for bearings with frequent starts and stops.Experimental research aimed at studying the performance of fluid film bearings in the specific operating regime,including the transition to mixed friction,is described in the paper.The tests were carried out on four tilting pad bearings of different material compositions:Steel/bronze,DLC/steel,steel/polyether ether ketone(PEEK),and steel/Babbitt.The tests comprised stopping under load and reproduction of the Stribeck curve by decreasing rotational speed to very low values,and observing the changes of friction force during the transition to mixed friction regime.Analysis of the transition conditions and other results showed clear differences between the tested bearings,illustrating the feasibility of less popular material compositions for bearings operating in specific conditions.More specifically,the DLC/steel bearing was demonstrating superior performance,i.e.lower friction,transition to mixed friction occurring at higher load,and more stable performance at start-stop regime over the other tested bearings.