期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Study of beam divergence and thrust vector eccentricity characteristics of the Hall thruster based on dual Faraday probe array planes and its applications
1
作者 陈新伟 赵勇 +11 位作者 田恺 高俊 孙明明 孙新锋 郭宁 张宏 王尚民 冯杰 陈焘 耿海 杨俊泰 史楷 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期104-115,共12页
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr... The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume. 展开更多
关键词 Hall thruster beam divergence thrust vector eccentricity dual Faraday probe array planes
下载PDF
MULTI-CONTROLLER STRUCTURE OF SUPERMANEUVERABLE AIRCRAFT 被引量:1
2
作者 朱恩 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第3期157-161,共5页
This paper proposes a method of using multi controllers to control supermaneuverable aircraft. A nonlinear dynamic inversion controller is used for supermaneuver. A gain scheduled controller is used for routine man... This paper proposes a method of using multi controllers to control supermaneuverable aircraft. A nonlinear dynamic inversion controller is used for supermaneuver. A gain scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector thrust for lower velocity maneuver control. Unlike the variation structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic inversion to gain scheduling, while the other is used for switching from gain scheduling to dynamic inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft. 展开更多
关键词 flight control system multi controller structure supermaneuver dynamic inversion gain schedule switch algorithm vector thrust
下载PDF
PTVC-M for Ultra-Agile VTOL and 300+ km·h-1 Cruising 被引量:1
3
作者 Chung-Kiak Poh Chung-How Poh 《Advances in Aerospace Science and Technology》 2016年第1期48-57,共11页
There remains a need to develop improved VTOL techniques that are cost-effective and with minimum compromise on cruising flight performance for fixed-wing aircraft. This work proposes an elegant VTOL control method kn... There remains a need to develop improved VTOL techniques that are cost-effective and with minimum compromise on cruising flight performance for fixed-wing aircraft. This work proposes an elegant VTOL control method known as PTVC-M (pitch-axis thrust vector control with moment arms) for tailsitters. The hallmark of the approach is the complete elimination of control surfaces such as elevators and rudder. Computer simulations with a 1580 mm wing span airplane reveal that the proposed technique results in authoritative control and unique maneuverability such as inverted vertical hover and stall-spin with positive climb rate. Zero-surface requirement of the PTVC-M virtually eliminates performance tradeoffs between VTOL and high-speed flight. In this proof-of-concept study, the VTOL-capable aircraft achieves a VH of 360 km·h<sup>-1</sup> at near sea-level. The proposed technique will benefit a broad range of applications including high-performance spinsonde that can directly measure 10-m surface wind, tropical cyclone research, and possibly serving as the cornerstone for the next-generation sport aerobatics. 展开更多
关键词 Pitch-Axis Thrust vector Control VTOL Tailsitter Ultra-Maneuverability
下载PDF
Numerical and experimental investigation of plasma plume deflection with MHD flow control
4
作者 赵凯 李锋 +3 位作者 孙佰刚 杨宏宇 周韬 孙睿智 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第6期152-160,共9页
This paper presents a composite magneto hydrodynamics(MHD) method to control the lowtemperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an... This paper presents a composite magneto hydrodynamics(MHD) method to control the lowtemperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine.The principle of plasma flow with MHD control is analyzed.The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model.A test rig with plasma flow controlled by MHD is established.An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow.Finally,plasma plume deflection is obtained in different working conditions.The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation.A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K.The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity.It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection. 展开更多
关键词 MHD plasma ionization degree thrust vector aero engine
下载PDF
SIMULATION RESEARCH OF ACTIVE VIBRATION CONTROL FOR ELASTIC MISSILE WITH SWING NOZZLE THRUST VECTOR CONTROL 被引量:1
5
作者 XIAODONG LIU YUNJIE WU +2 位作者 YONG DENG SEN WANG JIAYUN SONG 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2013年第4期14-30,共17页
Aiming at the deficiencies of notch filters on the aspect of vibration suppression for elastic missile with swing nozzle thrust vector control(SNTVC),an active vibration controller(AVC)is proposed.It is composed of an... Aiming at the deficiencies of notch filters on the aspect of vibration suppression for elastic missile with swing nozzle thrust vector control(SNTVC),an active vibration controller(AVC)is proposed.It is composed of an optimal state feedback controller(OSFC)and an optimal minimal order state observer(OMOSO),which can be respectively designed based on the separation principle.The design rules of these two elements are successively given.Computer simulation results present that AVC can realize strong vibration suppression and good convergence property after disturbing.Moreover,it has simple design and then it is easily implemented in engineering.In addition,the AVC scheme can also resolve the poor system stability to a great extent,which is resulted from the bad static stability of missile body. 展开更多
关键词 Swing nozzle thrust vector control anti-aircraft missile servo-elasticity state feedback state observer active vibration control
原文传递
Numerical study of a trapezoidal bypass dual throat nozzle
6
作者 Shuai HUANG Jinglei XU +4 位作者 Kaikai YU Yangsheng WANG Ruifeng PAN Kuangshi CHEN Yuqi ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期42-62,共21页
Bypass Dual Throat Nozzle(BDTN)is a novel type of fluidic thrust vectoring nozzle.To improve the infrared stealth performance of BDTN,a nozzle based on BDTN is proposed and numerically simulated.Each cross-section alo... Bypass Dual Throat Nozzle(BDTN)is a novel type of fluidic thrust vectoring nozzle.To improve the infrared stealth performance of BDTN,a nozzle based on BDTN is proposed and numerically simulated.Each cross-section along the x-axis of the novel nozzle becomes a trapezoid,which is named“BDTN-TRA.”The main numerical simulation results show that BDTN-TRA can produce a thrust vectoring angle when the upper or lower bypass valve is open.The angle difference between the two conditions mentioned above is usually approximately 1°-2°.Even if the two bypasses are closed,BDTN-TRA can produce a small thrust vectoring angle at around 3°-5°.When the sidewall angle increases from 60°to 90°,the thrust coefficient and thrust vectoring angle under each work condition usually decrease.A larger aspect ratio indicates better performance.As the aspect ratio increases over 7.2,the performance of BDTN-TRA is quite close to that of BDTN with rectangular cross-sections at the same aspect ratio.These features will benefit the control and trimming for future aircraft design,especially for the flying wing layout aircraft.Last but not least,BDTN-TRA has a more extraordinary mixing performance compared with BDTN.The distributions of static temperature and axial velocity along the x-axis of BDTN-TRA with sidewall angle of 60°decrease faster than those of BDTN.When the total temperature of the inlet equals 1600 K,the static temperature difference between BDTN-TRA with sidewall angles of 60°and 90°is over 360 K at twice the length of the nozzle downstream of the nozzle exit,which is the reflection for excellent infrared stealth for the fighter. 展开更多
关键词 Bypass dual throat nozzle Infrared stealth performance Mixing performance Trapezoidal cross-sections Thrust vectoring
原文传递
Turning mechanism and composite control of stratospheric airships 被引量:2
7
作者 Mao-hua ZHANG Deng-ping DUAN Li CHEN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第11期859-865,共7页
The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key param... The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key parameters for steady turning. We compare and analyze the different driven-characteristics between aerodynamic control surfaces and vectored thrust in turning. We design a composite control combining aerodynamic control surfaces and vectored thrust according to different dynamic pressure conditions, to achieve coordinated turning under high or low airspeed situations. 展开更多
关键词 Stratospheric airships Horizontal turn Composite control Control allocation vectored thrust
原文传递
Numerical analysis of deflection control of a gas plasma jet based on magnetohydrodynamic staggered electrode configuration
8
作者 Jingjia ZHANG Junwei LI +1 位作者 Zelin ZHANG Zhijun WEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期47-58,共12页
To control the deflection of the gas plasma jet, a new analytical method is proposed based on the Magnetohydrodynamic(MHD) technique. Based on the typical MHD power generation model, the applied voltage is applied to ... To control the deflection of the gas plasma jet, a new analytical method is proposed based on the Magnetohydrodynamic(MHD) technique. Based on the typical MHD power generation model, the applied voltage is applied to the staggered electrodes, that is, a pair of electrodes on the same side wall are connected to generate an axial current in the channel. Under the action of the magnetic field perpendicular to the direction of the flow, the plasma is subjected to electromagnetic forces perpendicular to these two directions, and the jet is deflected. The computational model including the Navier-Stokes equations coupled with electromagnetic source terms, the electric potential equation and Ohm’s law is solved. The deflection of the gas jet under the action of an electromagnetic field is observed, and the maximum deflection angle is about 14.8°. The influences of the electric field, magnetic field, and conductivity on the jet deflection are studied. Results show that although the influences of these three factors on the deflection are similar, and the effect of increasing the electric field strength is slightly greater, priority should be given to increasing the magnetic field strength from the perspective of reducing energy consumption. The Stuart number is introduced to assess the ability of electromagnetic force to control jet deflection. When the electromagnetic parameters are constant, this solution provides better control of low-density and low-speed fluid flows. The calculation results show that using the staggered electrode method configuration is feasible in terms of controlling the deflection of a plasma jet deflection. 展开更多
关键词 Deflection angle Deflection control Gas plasma MAGNETOHYDRODYNAMIC Thrust vector
原文传递
A conceptual design for deflection device in VTDP system
9
作者 Yongwei Gao Jianming Zhang +2 位作者 Long Wang Bingzhen Chen Binbin Wei 《Advances in Aerodynamics》 2021年第1期29-48,共20页
The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was propos... The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was proposed to achieve effective hovering control.The magnitude of the lateral force that was applied to maintain balance while hovering was examined.A comparison between the experimental and numerical results for the 16H-1 was made to verify the numerical simulation approach.The deflection devices of the X-49 and the proposed design were analyzed using numerical simulations.The results indicated that a larger lateral force and lower power consumption were presented in the proposed design.The results of this article provide a new idea for the design of the VTDP system. 展开更多
关键词 vectored thrust ducted propeller Conceptual design Wind tunnel experiment Numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部