期刊文献+
共找到6,043篇文章
< 1 2 250 >
每页显示 20 50 100
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
1
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) glass fiber cloth All-solid-state Li metal Battery
下载PDF
Development of Kaolin and Glass Fiber Reinforced Composites for Thermal Insulating Panels
2
作者 Jagadiswar Reddy Tippi Reddy Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期44-59,共16页
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef... In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors. 展开更多
关键词 KAOLIN glass fiber Corn Husk BAMBOO Potassium Silicate Potassium Hydroxide
下载PDF
Study of the Diffusion Behavior of Seawater Absorption in Multi-Walled Carbon Nanotubes/Halloysite Nanotubes Hybrid Nanofillers Modified Epoxy-Based Glass/Carbon Fiber Composites
3
作者 Praful Choudhari Vivek Kulkarni Sanjeevakumar Khandal 《Modern Mechanical Engineering》 2024年第2期25-38,共14页
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har... In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients. 展开更多
关键词 glass/Carbon fiber Hybrid Composites Multiwall Carbon Nanotubes (MWCNTs) Halloysite Nanotubes (HNTs) Diffusion Behaviour Impact Properties Seawater Aging
下载PDF
Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber 被引量:3
4
作者 Xiao-Fa Wang Jun-Hong Zhang +1 位作者 Xlao-Llng Peng Xue-Feng Mao 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期301-307,共7页
Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microf... Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain. 展开更多
关键词 fiber lasers mode-locked thulium-doped fiber graphene MICROfiber
下载PDF
Mechanical Property Evaluation of Glass-carbon-durian Skin Fiber Reinforced Polylactic Acid Composites
5
作者 Boonsin Nadondu Prayoon Surin Jakawat Deeying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期244-247,共4页
The main objective of this work was to study and develop composite materials by experiments with mixtures of synthetic(glass fiber, carbon fiber) and natural fiber(durian skin fiber) reinforcements on a polylactic aci... The main objective of this work was to study and develop composite materials by experiments with mixtures of synthetic(glass fiber, carbon fiber) and natural fiber(durian skin fiber) reinforcements on a polylactic acid(PLA) matrix composite, because of its excellent mechanical properties. Durian skin fiber(DSF) is a natural waste throughout Thailand, and an alternative to recycling is to realize its potential as a new reinforcement through mixing and the injection molding processes. The flexural strength(σ_(F)) and flexural modulus(E_(F)) of the composites from specimens showed a maximum value by content of durian skin fiber at 10 wt%, for good performance relative to particle dispersion between the matrix and the fiber, and showed a minimum value by content of durian skin fiber at 20 wt%, because the reinforcement material affects the mechanical properties in the experiments. 展开更多
关键词 glass fiber carbon fiber durian skin fiber polylactic acid mechanical properties
下载PDF
Efficient utilization of glass fiber separator for low-cost sodium-ion batteries
6
作者 Xiaohang Ma Zhijie Chen +7 位作者 Tianwen Zhang Xueqian Zhang Yuan Ma Yanqing Guo Yiyong Wei Mengyuan Ge Zhiguo Hou Zhenfa Zi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1878-1886,共9页
The separator is a key component of sodium-ion battery,which greatly affects the electrochemical performances and safety characteristics of the battery.Conventional glass fiber separator cannot meet the requirements o... The separator is a key component of sodium-ion battery,which greatly affects the electrochemical performances and safety characteristics of the battery.Conventional glass fiber separator cannot meet the requirements of large-scale application because of high cost and poor mechanical properties.Herein,the novel composite separators are prepared by a simple slurry sieving process using glass fiber separator scraps and ordinary qualitative filter paper as raw materials.As the composite mass ratio is 1:1,the composite separator has excellent comprehensive properties,including tensile strength of 15.8 MPa,porosity of 74.3%,ionic conductivity of 1.57×10^(-3)S·cm^(-1)and thermal stability at 210℃.The assembled sodium-ion battery shows superior cycling performance(capacity retention of 94.1%after 500 cycles at 1C)and rate capacity(retention rate of 87.3%at 10C),and it maintains fine interface stability.The above results provide some new ideas for the separator design of high-performance and low-cost sodium-ion batteries. 展开更多
关键词 SEPARATOR glass fiber low cost sodium-ion batteries
下载PDF
A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser 被引量:2
7
作者 周仁来 鞠有伦 +2 位作者 赵杰 杨超 王月珠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期389-394,共6页
In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction effi... In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis. 展开更多
关键词 pulse fiber laser gain-switched laser thulium-doped fiber (TDF) laser rate equation model lasertheory
下载PDF
Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology
8
作者 Cut Rahmawati Lia Handayani +6 位作者 Muhtadin Muhammad Faisal Muhammad Zardi S.M.Sapuan Agung Efriyo Hadi Jawad Ahmad Haytham F.Isleem 《Journal of Renewable Materials》 EI 2023年第10期3751-3767,共17页
Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Resp... Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Response Surface Methodology(RSM).The Central Composite Design(CCD)was applied to determine the optimization of WGs and CF addition to the mortar compressive strength.Compressive strength and microstructure testing with Scanning Electron Microscope(SEM),Fourier-transform Infrared Spectroscopy(FT-IR),and X-Ray Diffraction(XRD)were conducted to specify the mechanical ability and bonding between the matrix,CF,and WGs.The results showed that the chemical treatment of CF produced 49.15%cellulose,with an average particle size of 1521μm.The regression of a second-order polynomial model yielded an optimum composition consisting of 12.776%WGs and 2.344%CF with a predicted compressive strength of 19.1023 MPa.C-S-H gels were identified in the mortars due to the dissolving of SiO_(2) in WGs and cement.The silica from WGs increased the C-S-H phase.CF plays a role in preventing,bridging,and branching micro-cracks before reaching maximum stress.WGs aggregates and chemically treated CF are suitable to be composited in mortar to increase compressive strength. 展开更多
关键词 CELLULOSE response surface methodology waste glass coir fiber composite
下载PDF
Static Bending Creep Properties of Glass Fiber Surface Composite Wood
9
作者 Shang Zhang Jie Wang +4 位作者 Benjamin Rose Yushan Yang Qingfeng Ding Bengang Zhang Chunlei Dong 《Journal of Renewable Materials》 SCIE EI 2023年第6期2881-2891,共11页
To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevic... To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevicana,P),the performance of Normal Creep(NC)and Mechanical Sorptive Creep(MSC)of GFRP and their influencing factors were tested and analyzed.The test results and analysis show that:(1)The MOE and MOR of Poplar were increased by 17.06%and 10.00%respectively by the glass fiber surface reinforced composite.(2)The surface reinforced P with glass fiber cloth only exhibits the NC pattern of wood and loses the MSC characteristics of wood,regardless of the constant or alternating changes in relative humidity.(3)The instantaneous elastic deformation,viscoelastic deformation,viscous deformation and total creep deflection of GFRP are positively correlated with the stress level of the external load applied to the specimen.Still,the specimen’s creep recovery rate is negatively correlated with the stress level of the external load applied to the specimen.The static creep deflection and viscous deformation of GFRP increase with the increase of the relative humidity of the environment.(4)The MSC maximum creep deflection of GFRP increased by only 7.41%over the NC maximum creep deflection,but the MSC maximum creep deflection of P increased by 199.25%over the NC maximum creep deflection.(5)The Burgers 4-factor model and the Weibull distribution equation can fit the NC and NC recovery processes of GFRP well. 展开更多
关键词 glass fiber reinforced composite wood Normal Creep(NC) wood creep Mechanical Sorptive Creep(MSC) creep model
下载PDF
Analysis of gain distribution in cladding-pumped thulium-doped fiber laser and optical feedback inhibition problem in fiber-bulk laser system
10
作者 吉恩才 柳强 +1 位作者 胡震岳 巩马理 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期238-247,共10页
The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With ... The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition(OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method. 展开更多
关键词 thulium-doped fiber laser gain distribution optical feedback inhibition Ho:YAG laser
下载PDF
The study of electroless Ni-W-P alloy plating on glass fibers 被引量:8
11
作者 HUANG Ying HUANG Fei ZHAO Wentao SHI Ke ZHAO Li WANG Yanli 《Rare Metals》 SCIE EI CAS CSCD 2007年第4期365-371,共7页
Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surf... Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material. 展开更多
关键词 Ni-W-P alloy electroless plating RESISTIVITY electromagnetic parameters glass fiber
下载PDF
Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part I: Experimental study 被引量:11
12
作者 WU Jong-hwei YEN Tsong +1 位作者 HUNG Chien-hsing LIN Yiching 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期166-174,共9页
This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for ... This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fi- ber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and ⊥-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams’ ductility, especially for the over-strengthened beams (⊥-shaped beams). 展开更多
关键词 Strengthening Prestressed glass fiber reinforcement polymer Modulus of Elasticity R. C. beams
下载PDF
A Single-Frequency Linearly Polarized Fiber Laser Using a Newly Developed Heavily Tm3+-Doped Germanate Glass Fiber at 1.95 μm 被引量:8
13
作者 杨麒 徐善辉 +5 位作者 李灿 杨昌盛 冯洲明 肖瑜 黄湘 杨中民 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期62-65,共4页
A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100... A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB. 展开更多
关键词 FBG Doped Germanate glass fiber at 1.95 DBR kHz RIN A Single-Frequency Linearly Polarized fiber Laser Using a Newly Developed Heavily Tm
下载PDF
Structure and Properties of CaO-MgO-SiO_2 Inorganic Glass Fiber with Additives (Al_2O_3,Y_2O_3) 被引量:2
14
作者 LIU Hao WANG Xitang +2 位作者 ZHANG Baoguo WANG Zhoufu YANG Yuhan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期58-62,共5页
Abstract: Structure, crystallization and dissolution properties of CaO-MgO-SiO2 inorganic glass fiber in the presence of additives (A12O3, Y2O3) were investigated by DTA, XRD, FTIR and ICP-AES techniques. The resul... Abstract: Structure, crystallization and dissolution properties of CaO-MgO-SiO2 inorganic glass fiber in the presence of additives (A12O3, Y2O3) were investigated by DTA, XRD, FTIR and ICP-AES techniques. The results show that with the addition ofAl2O3 and Y2O3, the glass network structure is strengthened and the precipitation of crystals is inhibited for heat-treated fibers. Compared with Y2O3 doped fibers, AI2O3 presents more significant effects on the enhancement of silica network and the inhibition of crystallization in fibers. As for dissolution properties in physiological fluids, though the weight losses, changes of pH values and leached ions concentration lower slightly with the addition ofA1203 and Y203 for the intensified network structure, and fibers still present high dissolution rates. 展开更多
关键词 glass fiber CRYSTALLIZATION DISSOLUTION
下载PDF
Strain coordination of quasi-plane-hypothesis for reinforced concrete beam strengthened by epoxy-bonded glass fiber reinforced plastic plate 被引量:4
15
作者 曾宪桃 丁亚红 王兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第4期391-394,共4页
The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly we... The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to eaeh other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiher that parallels to the neutral axis of plated beam within the scope of effective height ( h0 ) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εGFRP=Kεsteel. 展开更多
关键词 glass fiber reinforced plastic strengthening concrete beam quasi-plane-hypothesis
下载PDF
Development and Properties of Glass Fiber Reinforced Plastics Geogrid 被引量:2
16
作者 王清标 ZHANG Cong +3 位作者 WEN Xiaokang Lü Rongshan LIANG Xunmei LU Shide 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期520-527,共8页
Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stabi... Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation. 展开更多
关键词 glass fiber reinforced plastics geogrid POLYETHYLENE fracture strength elongation atbreak three axial compression test FLAC3D numerical simulation
下载PDF
THE PHYSICAL SIMULATION ON EXTRUSION PROCESS OF GLASS FIBER COMPOSITE WIRE COATED BY LEAD 被引量:1
17
作者 H.F.Sun W.B.Fang F.Han W.X.He E.D.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第6期940-944,共5页
The method of manufacturing the composite wire by extruding lead to coated glass fiber is described. The different composite wire that diameter is from 0.5 to 1.0mm has been produced by two kinds of different extrudin... The method of manufacturing the composite wire by extruding lead to coated glass fiber is described. The different composite wire that diameter is from 0.5 to 1.0mm has been produced by two kinds of different extruding technology (getting wire along horizontal direction and getting wire along perpendicular direction). The optimal extruding techno- logical parameter has been given in different extruding technology by the physical simulation (H: 300℃, 550kN, 0.16mm. P: 300℃, 215kN, 0.16mm). The effect on the coating speed by other extruding technological parameters in the different extruding technology has been discussed. The extruding temperature and extruding force is higher, the coating speed is faster. It has been pointed, that the affection on the extruding technology by the extruding temperature has also behaved as the extruding temperature rising up spontaneously. The reason for exiting the minimum extruding force and maximum extruding force also has been discussion in this paper. It is also important to the extruding process and coating speed that is the coating clearance. 展开更多
关键词 COMPOSITE LEAD glass fiber COATING physical simulation
下载PDF
1.3 μm Emission from Nd^(3+)-doped Tellurite Glass Fiber 被引量:1
18
作者 Shixun DAI, Junjie ZHANG, Shunguang LI, Jianhu YANG, Shiqing XU, Guonian WANG and Lili HUShanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期668-670,共3页
1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/... 1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/2→4I13/2 transition in fiber is at 1.33 μm wavelength with a spectral bandwidth of 55 nm, which is similar to that in bulk. In the case of the fiber, the lifetime of 4F3/2 Ievel is 164 μs, and the quantum efficiency is -100%. The figure-of-merit for gain (<δpTo) for Nd3+-doped tellurite glass is about 2.8×10-24 cm2·S, which is quite comparable vvith that in Nd3+-doped fluoroaluminate glasses, and is an order of magnitude larger than Pr3+-doped fluoride glasses. 展开更多
关键词 Tellurite glass glass fiber Rare-earth ion Judd-Ofelt theory
下载PDF
A Study on the Estimation of Prefabricated Glass Fiber Reinforced Concrete Panel Strength Values with an Artificial Neural Network Model 被引量:2
19
作者 S.A.Yıldızel A.U.Öztürk 《Computers, Materials & Continua》 SCIE EI 2016年第4期41-52,共12页
In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced c... In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced concrete panels.For the application of the ANN models,143 different four-point bending test results of glass fiber reinforced concrete mixes with the varied parameters of temperature,fiber content and slump values were introduced the artificial bee colony optimization and conventional back propagation algorithms.Training and the testing results of the corresponding models showed that artificial neural networks trained with the artificial bee colony optimization algorithm have remarkable potential for the prediction of modulus of rupture values and this method can be used as a preliminary decision criterion for quality check of the fabricated products. 展开更多
关键词 Neural network glass fiber reinforced concrete glass fiber
下载PDF
High-cycle Fatigue Life Extension of Glass Fiber/Polymer Composites with Carbon Nanotubes 被引量:1
20
作者 Christopher S Grimmer C K H Dharan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期167-173,共7页
The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon n... The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites. 展开更多
关键词 glass fiber COMPOSITES carbon nanotubes FATIGUE strain energy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部