Cold pools and associated wind storms are frequent occurrences in Southwestern Nigeria, especially during the early monsoon phase. The associated surface wind gust frequently destroys properties resulting in economic ...Cold pools and associated wind storms are frequent occurrences in Southwestern Nigeria, especially during the early monsoon phase. The associated surface wind gust frequently destroys properties resulting in economic losses. Two case events were investigated in this study;one event occurred in May 2019 and the other occurred in March 2020, both in southwestern Nigeria. The National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP)/Climate Prediction Center (CPC) Infrared brightness temperatures and CPC Morphing technique (CMORPH) rainfall products were analysed alongside in-situ observations from the Nigerian Meteorological Agency (NiMET). Other data sources analysed are the National Aeronautics and Space Administration (NASA) Prediction Of Worldwide Energy Resources (POWER) and the World Wide Lightning Location Network (WWLLN). Cold pools were identified in the impacted communities as indicated by surface characteristics investigated from the in-situ observations. There was a sudden change in wind direction, with a simultaneous drop in temperature accompanied by increasing wind speed. Pressure and humidity were observed to change in the same period. Thunderstorms were also present in the impacted communities, as observed by the in-situ observations, in both case events. The presence of lightning as observed by WWLLN agrees with the in-situ thunderstorms. The cloud characteristics showed the presence of cloud shields, by their brightness temperature, over the impacted communities during the period of the cold pools in both case events. The systems were raining at the time of the observations in both cases, consistent with the in-situ thunderstorm observations. The communities were heavily impacted with several properties destroyed in the events. These early monsoon seasonal windstorms require a forecasting tool for their prediction and this study presents an eye-opener for further investigation and innovative research to address the menace.展开更多
文摘Cold pools and associated wind storms are frequent occurrences in Southwestern Nigeria, especially during the early monsoon phase. The associated surface wind gust frequently destroys properties resulting in economic losses. Two case events were investigated in this study;one event occurred in May 2019 and the other occurred in March 2020, both in southwestern Nigeria. The National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP)/Climate Prediction Center (CPC) Infrared brightness temperatures and CPC Morphing technique (CMORPH) rainfall products were analysed alongside in-situ observations from the Nigerian Meteorological Agency (NiMET). Other data sources analysed are the National Aeronautics and Space Administration (NASA) Prediction Of Worldwide Energy Resources (POWER) and the World Wide Lightning Location Network (WWLLN). Cold pools were identified in the impacted communities as indicated by surface characteristics investigated from the in-situ observations. There was a sudden change in wind direction, with a simultaneous drop in temperature accompanied by increasing wind speed. Pressure and humidity were observed to change in the same period. Thunderstorms were also present in the impacted communities, as observed by the in-situ observations, in both case events. The presence of lightning as observed by WWLLN agrees with the in-situ thunderstorms. The cloud characteristics showed the presence of cloud shields, by their brightness temperature, over the impacted communities during the period of the cold pools in both case events. The systems were raining at the time of the observations in both cases, consistent with the in-situ thunderstorm observations. The communities were heavily impacted with several properties destroyed in the events. These early monsoon seasonal windstorms require a forecasting tool for their prediction and this study presents an eye-opener for further investigation and innovative research to address the menace.