Cold pools and associated wind storms are frequent occurrences in Southwestern Nigeria, especially during the early monsoon phase. The associated surface wind gust frequently destroys properties resulting in economic ...Cold pools and associated wind storms are frequent occurrences in Southwestern Nigeria, especially during the early monsoon phase. The associated surface wind gust frequently destroys properties resulting in economic losses. Two case events were investigated in this study;one event occurred in May 2019 and the other occurred in March 2020, both in southwestern Nigeria. The National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP)/Climate Prediction Center (CPC) Infrared brightness temperatures and CPC Morphing technique (CMORPH) rainfall products were analysed alongside in-situ observations from the Nigerian Meteorological Agency (NiMET). Other data sources analysed are the National Aeronautics and Space Administration (NASA) Prediction Of Worldwide Energy Resources (POWER) and the World Wide Lightning Location Network (WWLLN). Cold pools were identified in the impacted communities as indicated by surface characteristics investigated from the in-situ observations. There was a sudden change in wind direction, with a simultaneous drop in temperature accompanied by increasing wind speed. Pressure and humidity were observed to change in the same period. Thunderstorms were also present in the impacted communities, as observed by the in-situ observations, in both case events. The presence of lightning as observed by WWLLN agrees with the in-situ thunderstorms. The cloud characteristics showed the presence of cloud shields, by their brightness temperature, over the impacted communities during the period of the cold pools in both case events. The systems were raining at the time of the observations in both cases, consistent with the in-situ thunderstorm observations. The communities were heavily impacted with several properties destroyed in the events. These early monsoon seasonal windstorms require a forecasting tool for their prediction and this study presents an eye-opener for further investigation and innovative research to address the menace.展开更多
配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探...配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探空资料、多普勒天气雷达等资料,对此次强对流天气过程及其对电网影响进行分析。结果表明:(1)此次强对流天气以雷电、雷暴大风天气为主,西和、礼县、武都、康县等县(区)出现大面积用户停电和电力负荷损失等不利影响。(2)强对流发展主要受高原槽和切变线共同影响,在“上冷下暖”的大气层结不稳定条件下,由地面辐合线触发较强的雷暴大风天气;卫星云图和雷达回波也显示对流云团的发生发展与地面雷暴大风相吻合。(3)陇南市配电线路故障范围分布与强对流天气发生时间和过境路径基本一致,利用逐10 min极大风速和闪电定位数据,探讨得出当极大风速值超过15.0 m·s^(-1)、或正地闪电流强度超过43 k A、或负地闪电流强度超过26 k A时,配电线路发生故障的可能性较大。展开更多
文摘Cold pools and associated wind storms are frequent occurrences in Southwestern Nigeria, especially during the early monsoon phase. The associated surface wind gust frequently destroys properties resulting in economic losses. Two case events were investigated in this study;one event occurred in May 2019 and the other occurred in March 2020, both in southwestern Nigeria. The National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP)/Climate Prediction Center (CPC) Infrared brightness temperatures and CPC Morphing technique (CMORPH) rainfall products were analysed alongside in-situ observations from the Nigerian Meteorological Agency (NiMET). Other data sources analysed are the National Aeronautics and Space Administration (NASA) Prediction Of Worldwide Energy Resources (POWER) and the World Wide Lightning Location Network (WWLLN). Cold pools were identified in the impacted communities as indicated by surface characteristics investigated from the in-situ observations. There was a sudden change in wind direction, with a simultaneous drop in temperature accompanied by increasing wind speed. Pressure and humidity were observed to change in the same period. Thunderstorms were also present in the impacted communities, as observed by the in-situ observations, in both case events. The presence of lightning as observed by WWLLN agrees with the in-situ thunderstorms. The cloud characteristics showed the presence of cloud shields, by their brightness temperature, over the impacted communities during the period of the cold pools in both case events. The systems were raining at the time of the observations in both cases, consistent with the in-situ thunderstorm observations. The communities were heavily impacted with several properties destroyed in the events. These early monsoon seasonal windstorms require a forecasting tool for their prediction and this study presents an eye-opener for further investigation and innovative research to address the menace.
文摘配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探空资料、多普勒天气雷达等资料,对此次强对流天气过程及其对电网影响进行分析。结果表明:(1)此次强对流天气以雷电、雷暴大风天气为主,西和、礼县、武都、康县等县(区)出现大面积用户停电和电力负荷损失等不利影响。(2)强对流发展主要受高原槽和切变线共同影响,在“上冷下暖”的大气层结不稳定条件下,由地面辐合线触发较强的雷暴大风天气;卫星云图和雷达回波也显示对流云团的发生发展与地面雷暴大风相吻合。(3)陇南市配电线路故障范围分布与强对流天气发生时间和过境路径基本一致,利用逐10 min极大风速和闪电定位数据,探讨得出当极大风速值超过15.0 m·s^(-1)、或正地闪电流强度超过43 k A、或负地闪电流强度超过26 k A时,配电线路发生故障的可能性较大。