AIMTo investigate the protective effect of a recombinant adeno-associated virus carrying thymosin β<sub>4</sub> (AAV-Tβ<sub>4</sub>) on murine colitis via intracolonic a...AIMTo investigate the protective effect of a recombinant adeno-associated virus carrying thymosin β<sub>4</sub> (AAV-Tβ<sub>4</sub>) on murine colitis via intracolonic administration.METHODSAAV-Tβ<sub>4</sub> was prepared and intracolonically used to mediate the secretory expression of Tβ<sub>4</sub> in mouse colons. Dextran sulfate sodium (DSS) was applied to induce the murine ulcerative colitis, and 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to establish a mouse colitis model resembling Crohn’s disease. The disease severity and colon injuries were observed and graded to reveal the effects of AAV-Tβ<sub>4</sub> on colitis. The activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were determined using biochemical assays. Colonic levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 were measured using ELISA, and mucosal epithelial cell apoptosis and proliferation were detected by TUNEL assay and immunochemistry, respectively.RESULTSRecombinant AAVs efficiently delivered LacZ and Tβ<sub>4</sub> into the colonic tissues of the mice, and AAV-Tβ<sub>4</sub> led to a strong expression of Tβ<sub>4</sub> in mouse colons. In both the DSS and TNBS colitis models, AAV-Tβ<sub>4</sub>-treated mice displayed distinctly attenuated colon injuries and reduced apoptosis rate of colonic mucosal epithelia. AAV-Tβ<sub>4</sub> significantly reduced inflammatory cell infiltrations and relieved oxidative stress in the inflamed colons of the mice, as evidenced by decreases in MPO activity and MDA content and increases in SOD activity. AAV-Tβ<sub>4</sub> also modulated colonic TNF-α, IL-1β and IL-10 levels and suppressed the compensatory proliferation of colonic epithelial cells in DSS- and TNBS-treated mice.CONCLUSIONTβ<sub>4</sub> exerts a protective effect on murine colitis, indicating that AAV-Tβ<sub>4</sub> could potentially be developed into a promising agent for the therapy of inflammatory bowel diseases.展开更多
AIM:To investigate whether serum thymosinβ4 can provide diagnostic or prognostic information in liver failure patients caused by chronic hepatitis B virus(HBV) infection. METHODS:Serum thymosinβ4 levels were measure...AIM:To investigate whether serum thymosinβ4 can provide diagnostic or prognostic information in liver failure patients caused by chronic hepatitis B virus(HBV) infection. METHODS:Serum thymosinβ4 levels were measured in 30 patients with acute-on-chronic liver failure(ACLF), 31 patients with chronic liver failure(CLF),30 patients with compensated liver cirrhosis(CR)and 32 patients with chronic hepatitis B and 30 healthy controls.Serum thymosinβ4 levels were measured by enzyme-linked immunosorbent assay and Child-Pugh and model for end-stage liver disease(MELD)scores were calculated for each patient on admission.RESULTS:Compared with healthy controls,serum thymosinβ4 levels in ACLF,CLF,CR and chronic hepatitis B patients were significantly lower,6.5047 (4.7879-10.5314)μg/mL vs 0.4632(0.2759-0.8768) μg/mL,0.6981(0.5209-1.2008)μg/mL,1.8053 (0.8110-2.3397)μg/mL,3.7803(1.8570-6.4722)μg/mL, respectively(P<0.001).The levels of thymosinβ4 in liver failure(ACLF or CLF)patients were markedly lower than that in CR(P<0.001),and a difference was also found between CLF and ACLF patients(P=0.038).In patients with chronic liver disease,there was a positive relationship between thymosinβ4 levels and albumin, choline esterase,and platelet(P<0.001),and negative relationship with alanine aminotransferase(P=0.020), aspartate aminotransferase,total bilirubin,international normalized ratio of prothrombin time,and Child-Pugh and MELD scores(P<0.001).Of the 61 liver failure patients,the thymosinβ4 levels of non-survivors were significantly lower than that of survivors(P=0.007). Receiver operating characteristics analysis identified a thymosinβ4 cutoff level of 0.5708μg/mL for predicting poor prognosis in all liver failure patients.The serial thymosinβ4 values were observed in 13 liver failure inpatients.Lower initial values were observed in the death.While greater improvement in thymosinβ4 value was found in those who recovered from the disease. CONCLUSION:Serum thymosinβ4 can be used as an important potential predictor for liver failure caused by chronic HBV infection.展开更多
Aim: To determine the therapeutic effect of thy- mosin β4 (Tβ4) for treatment of ischemic limb disease in a mouse model. Methods: A mouse model of hindlimb ischemia was created by permanent ligation of femoral arter...Aim: To determine the therapeutic effect of thy- mosin β4 (Tβ4) for treatment of ischemic limb disease in a mouse model. Methods: A mouse model of hindlimb ischemia was created by permanent ligation of femoral arteries and internal iliac artery. Tβ4 was dissolved in sterile saline and intramuscularly injected into the centre and periphery of ligation area in the treatment group (n = 10) starting from the surgery day until 4 weeks after surgery, while control animals received saline injection only (n = 9). All animals were sacrificed at 6 weeks after surgery and used for immunohistochemistry studies. Results: Tβ4 stimulated angiogenesis was evidenced by increased vascular density based on CD31 immunostaining, which was sig- nifycantly increased in Tβ4 group (562.5 ± 78.4/mm2) as compared with control group (371.1 ± 125.7/mm2;p 0.05) groups. Tβ4 increased Pax3/7+ skeletal muscle progenitor cell density. Pax3/7+ cell density of Tβ4 group (13.7% ± 2%) was significantly higher than that of the control group (4.3% ± 1.6%, p < 0.05). However, the numbers of central nuclei fiber and central nuclei per fiber were insignificantly increased in Tβ4 group as compared to control group. The numbers of central nuclei fiber were 8.9 ± 2.1 and 9.5 ± 1.6, and the central nuclei per fiber were 0.25 ± 0.07 and 0.48 ± 0.09 for control and Tβ4 groups, respectively. Conclusions: This preliminary study suggests that localized delivery of Tβ4 increased angiogenesis and skeletal muscle progenitor cell density in ischemic skeletal muscle, but failed to promote skeletal muscle regeneration.展开更多
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati...Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.展开更多
Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterize...Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men.展开更多
Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localize...Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
基金Supported by National Foundation of Natural Sciences,China,No.81300293
文摘AIMTo investigate the protective effect of a recombinant adeno-associated virus carrying thymosin β<sub>4</sub> (AAV-Tβ<sub>4</sub>) on murine colitis via intracolonic administration.METHODSAAV-Tβ<sub>4</sub> was prepared and intracolonically used to mediate the secretory expression of Tβ<sub>4</sub> in mouse colons. Dextran sulfate sodium (DSS) was applied to induce the murine ulcerative colitis, and 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to establish a mouse colitis model resembling Crohn’s disease. The disease severity and colon injuries were observed and graded to reveal the effects of AAV-Tβ<sub>4</sub> on colitis. The activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were determined using biochemical assays. Colonic levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 were measured using ELISA, and mucosal epithelial cell apoptosis and proliferation were detected by TUNEL assay and immunochemistry, respectively.RESULTSRecombinant AAVs efficiently delivered LacZ and Tβ<sub>4</sub> into the colonic tissues of the mice, and AAV-Tβ<sub>4</sub> led to a strong expression of Tβ<sub>4</sub> in mouse colons. In both the DSS and TNBS colitis models, AAV-Tβ<sub>4</sub>-treated mice displayed distinctly attenuated colon injuries and reduced apoptosis rate of colonic mucosal epithelia. AAV-Tβ<sub>4</sub> significantly reduced inflammatory cell infiltrations and relieved oxidative stress in the inflamed colons of the mice, as evidenced by decreases in MPO activity and MDA content and increases in SOD activity. AAV-Tβ<sub>4</sub> also modulated colonic TNF-α, IL-1β and IL-10 levels and suppressed the compensatory proliferation of colonic epithelial cells in DSS- and TNBS-treated mice.CONCLUSIONTβ<sub>4</sub> exerts a protective effect on murine colitis, indicating that AAV-Tβ<sub>4</sub> could potentially be developed into a promising agent for the therapy of inflammatory bowel diseases.
基金Supported by The National Basic Research Program of China,No.2007CB512801the National 11th 5-year Plan for Hepatitis Research,No.2008ZX10002-005Tianjin Public Health Bureau Key Research Program,No.07KG9
文摘AIM:To investigate whether serum thymosinβ4 can provide diagnostic or prognostic information in liver failure patients caused by chronic hepatitis B virus(HBV) infection. METHODS:Serum thymosinβ4 levels were measured in 30 patients with acute-on-chronic liver failure(ACLF), 31 patients with chronic liver failure(CLF),30 patients with compensated liver cirrhosis(CR)and 32 patients with chronic hepatitis B and 30 healthy controls.Serum thymosinβ4 levels were measured by enzyme-linked immunosorbent assay and Child-Pugh and model for end-stage liver disease(MELD)scores were calculated for each patient on admission.RESULTS:Compared with healthy controls,serum thymosinβ4 levels in ACLF,CLF,CR and chronic hepatitis B patients were significantly lower,6.5047 (4.7879-10.5314)μg/mL vs 0.4632(0.2759-0.8768) μg/mL,0.6981(0.5209-1.2008)μg/mL,1.8053 (0.8110-2.3397)μg/mL,3.7803(1.8570-6.4722)μg/mL, respectively(P<0.001).The levels of thymosinβ4 in liver failure(ACLF or CLF)patients were markedly lower than that in CR(P<0.001),and a difference was also found between CLF and ACLF patients(P=0.038).In patients with chronic liver disease,there was a positive relationship between thymosinβ4 levels and albumin, choline esterase,and platelet(P<0.001),and negative relationship with alanine aminotransferase(P=0.020), aspartate aminotransferase,total bilirubin,international normalized ratio of prothrombin time,and Child-Pugh and MELD scores(P<0.001).Of the 61 liver failure patients,the thymosinβ4 levels of non-survivors were significantly lower than that of survivors(P=0.007). Receiver operating characteristics analysis identified a thymosinβ4 cutoff level of 0.5708μg/mL for predicting poor prognosis in all liver failure patients.The serial thymosinβ4 values were observed in 13 liver failure inpatients.Lower initial values were observed in the death.While greater improvement in thymosinβ4 value was found in those who recovered from the disease. CONCLUSION:Serum thymosinβ4 can be used as an important potential predictor for liver failure caused by chronic HBV infection.
文摘Aim: To determine the therapeutic effect of thy- mosin β4 (Tβ4) for treatment of ischemic limb disease in a mouse model. Methods: A mouse model of hindlimb ischemia was created by permanent ligation of femoral arteries and internal iliac artery. Tβ4 was dissolved in sterile saline and intramuscularly injected into the centre and periphery of ligation area in the treatment group (n = 10) starting from the surgery day until 4 weeks after surgery, while control animals received saline injection only (n = 9). All animals were sacrificed at 6 weeks after surgery and used for immunohistochemistry studies. Results: Tβ4 stimulated angiogenesis was evidenced by increased vascular density based on CD31 immunostaining, which was sig- nifycantly increased in Tβ4 group (562.5 ± 78.4/mm2) as compared with control group (371.1 ± 125.7/mm2;p 0.05) groups. Tβ4 increased Pax3/7+ skeletal muscle progenitor cell density. Pax3/7+ cell density of Tβ4 group (13.7% ± 2%) was significantly higher than that of the control group (4.3% ± 1.6%, p < 0.05). However, the numbers of central nuclei fiber and central nuclei per fiber were insignificantly increased in Tβ4 group as compared to control group. The numbers of central nuclei fiber were 8.9 ± 2.1 and 9.5 ± 1.6, and the central nuclei per fiber were 0.25 ± 0.07 and 0.48 ± 0.09 for control and Tβ4 groups, respectively. Conclusions: This preliminary study suggests that localized delivery of Tβ4 increased angiogenesis and skeletal muscle progenitor cell density in ischemic skeletal muscle, but failed to promote skeletal muscle regeneration.
基金supported by the National Natural Science Foundation of China,Nos.82271444(to JP),82271268(to BZ),and 82001346(to YL)the National Key Research and Development Program of China,No.2022YFE0210100(to BZ)。
文摘Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
基金supported by a grant from the French Multiple Sclerosis Society(ARSEP,Grant Number:R20163LL)(to AMG)。
文摘Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men.
文摘Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.