In nuclear fusion power supply systems, the thyristors often need to be connected in parallel for sustaining large current. However, research on the reverse recovery transient of parallel thyristors has not been repor...In nuclear fusion power supply systems, the thyristors often need to be connected in parallel for sustaining large current. However, research on the reverse recovery transient of parallel thyristors has not been reported yet. When several thyristors are connected in parallel,they cannot turn-off at the same moment, and thus the turn-off model based on a single thyristor is no longer suitable. In this paper, an analysis is presented for the reverse recovery transient of parallel thyristors. Parallel thyristors can be assumed as one virtual thyristor so that the reverse recovery current can be modeled by an exponential function. Through equivalent transformation of the rectifier circuit, the commutating over-voltage can be calculated based on Kirchhoff’s equation. The reverse recovery current and commutation over-voltage waveforms are measured on an experiment platform for a high power rectifier supply. From the measurement results, it is concluded that the modeling method is acceptable.展开更多
集成门极换流晶闸管(integrated gate commutated thyristor,IGCT)具有大电流导通损耗低和关断过程快速均匀可靠等特性,在固态限流器(solid state fault current limiter,SSFCL)应用中具有综合优势。为此,针对固态限流器中并联运行...集成门极换流晶闸管(integrated gate commutated thyristor,IGCT)具有大电流导通损耗低和关断过程快速均匀可靠等特性,在固态限流器(solid state fault current limiter,SSFCL)应用中具有综合优势。为此,针对固态限流器中并联运行的大功率IGCT,通过构建器件的集总电荷仿真模型对其关断过程进行了仿真分析,并结合试验验证深入研究了RC阻容缓冲和压敏电阻保护对并联IGCT关断特性的影响。大电流关断研究结果表明:RC缓冲能进一步缓解并联IGCT关断过程中的电流拥挤现象,降低拖尾电流下降率,减轻器件动态雪崩击穿的剧烈程度;在固态限流器中回路电感和关断电流均比较大的条件下,增加RC缓冲能大幅提高并联器件的关断可靠性。该研究成果可以为并联IGCT有效保护方案的设计提供参考。展开更多
基金supported by the International Thermonuclear Experimental Reactor Project of China(No.2008 GB104000)
文摘In nuclear fusion power supply systems, the thyristors often need to be connected in parallel for sustaining large current. However, research on the reverse recovery transient of parallel thyristors has not been reported yet. When several thyristors are connected in parallel,they cannot turn-off at the same moment, and thus the turn-off model based on a single thyristor is no longer suitable. In this paper, an analysis is presented for the reverse recovery transient of parallel thyristors. Parallel thyristors can be assumed as one virtual thyristor so that the reverse recovery current can be modeled by an exponential function. Through equivalent transformation of the rectifier circuit, the commutating over-voltage can be calculated based on Kirchhoff’s equation. The reverse recovery current and commutation over-voltage waveforms are measured on an experiment platform for a high power rectifier supply. From the measurement results, it is concluded that the modeling method is acceptable.
文摘集成门极换流晶闸管(integrated gate commutated thyristor,IGCT)具有大电流导通损耗低和关断过程快速均匀可靠等特性,在固态限流器(solid state fault current limiter,SSFCL)应用中具有综合优势。为此,针对固态限流器中并联运行的大功率IGCT,通过构建器件的集总电荷仿真模型对其关断过程进行了仿真分析,并结合试验验证深入研究了RC阻容缓冲和压敏电阻保护对并联IGCT关断特性的影响。大电流关断研究结果表明:RC缓冲能进一步缓解并联IGCT关断过程中的电流拥挤现象,降低拖尾电流下降率,减轻器件动态雪崩击穿的剧烈程度;在固态限流器中回路电感和关断电流均比较大的条件下,增加RC缓冲能大幅提高并联器件的关断可靠性。该研究成果可以为并联IGCT有效保护方案的设计提供参考。