A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way commu...A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.展开更多
Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(...Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis.展开更多
<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""><span style="font-family:Verdana;"> To evaluate intraobserv...<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""><span style="font-family:Verdana;"> To evaluate intraobserver and interobserver reliability of the measurement of the mechanical axis of the lower limb by means of the panoramic radiograph of lower limbs by physicians with different levels of medical practice. </span><b><span style="font-family:Verdana;">Method:</span></b> </span><span style="font-family:Verdana;">A</span><span style="font-family:""><span style="font-family:Verdana;"> retrospective cross-sectional study with preoperative and postoperative radiographic analysis of a group of 100 patients submitted to total knee arthroplasty.</span><b><span style="font-family:Verdana;"> Results: </span></b></span><span style="font-family:Verdana;">I</span><span style="font-family:""><span style="font-family:Verdana;">t was observed that there is a highly significant intraobserver and interobserver agreement (p < 0.0001), both preoperatively and postoperatively, among four observers with different training levels. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The panoramic radiograph of the lower limbs is a reliable method for measuring the mechanical axis of the lower limb in patients submitted to total knee arthroplasty, regardless of the level of medical practice of the evaluator.展开更多
Introduction: Accurate postoperative alignment and implant positioning are determinant factors for successful total knee arthroplasty (TKA). Patient-specific template (PST) is a technique that uses computer technology...Introduction: Accurate postoperative alignment and implant positioning are determinant factors for successful total knee arthroplasty (TKA). Patient-specific template (PST) is a technique that uses computer technology for the planning, deigning and production of cutting guides. This study aims to compare PST to conventional technique in terms of mechanical axis alignment and component positioning. Patients and method: 109 TKA were performed for 78 patients in 2 groups. Group A included 69 conventional TKA in 55 patients and Group B included 40 patient-specific TKA in 23 patient. Postoperative long-film X-rays were done for all patients to observe the mechanical axis, anatomical axis, lateral distal femoral mechanical angle and medial proximal tibial angle. Results: No statistically significant difference was found between the two groups regarding alignment or component positioning. Conclusion: Both techniques have shown similar results in restoring the mechanical axis and alignment after TKA. However, PST had the advantages of reduced blood loss and shorter operative time.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the in...The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.展开更多
Food-microbiota-host interactions provide an overarching framework for understanding the function of the gut microbiota axis.Diet is a major modulator of gut microbiota.Plant-based foods are rich in phytochemicals;the...Food-microbiota-host interactions provide an overarching framework for understanding the function of the gut microbiota axis.Diet is a major modulator of gut microbiota.Plant-based foods are rich in phytochemicals;therefore,it is essential to assess such foods and elucidate the mechanisms underlying their action.In this review,we summarize the role of gut microbiota in the communication between the gut and the brain,liver,lung,kidney,and joints,as well as the role of the gut microbiota axis in diseases involving these organs.In addition,we assess the effects of phytochemicals from plant-based foods on the gut microbiota axis via different pathways.展开更多
A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on do...A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed.The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine,and the three-dimensional model of the turbine is established.Kinematics analysis of the eccentric disc pitch control mechanism is carried out.Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived.Kinematics analysis and simulation are carried out,and the motion law of the corresponding mechanical system is obtained.By analyzing the force and motion of blade of VEVT,the expressions of the important parameters such as deflection angle,attack angle and energy utilization coefficient are obtained.The lateral induced velocity coefficient is acquired by momentum theorem,the hydrodynamic parameters such as energy utilization coefficient are derived,and the hydrodynamic characteristics of VEVT are also obtained.The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions,which verifies that VEVT has good self-startup performance and high energy capture efficiency.展开更多
Crack growth resistance plays a different role in crashworthiness analysis since the progressive energy absorption is based on controllable fracture mechanisms. In this regard, the present paper studies the efficient ...Crack growth resistance plays a different role in crashworthiness analysis since the progressive energy absorption is based on controllable fracture mechanisms. In this regard, the present paper studies the efficient crack growth resistance in off-axis crushing of composite tubular structures by implementing natural fiber yarns. One of the through-to-thickness reinforcement methods known as stitching has been chosen to influence the axial and off-axis crushing process. Improving the crack growth resistance and appropriate fiber breakage at different stages of crushing process can significantly improve the resistance force and consequently the energy absorption capability of composite absorbers in axial and off-axis crushing. This analysis will be applied to non-stitched and stitched CFRP composite boxes which showed brittle fracture and transverse shearing crushing modes under off-axis loading of 10 degrees. The analytical methods are also implemented to analysze the effect of various failure mechanisms such as bending, friction, bundle fracture, and interlaminar crack growth for the observed crushing modes. The proposed model is able to predict the crushing load and crush force efficiency in close agreement from experimental studies.展开更多
A recent study published in Cell Metabolism entitled“Gut microbial alterations in arginine metabolism determine bone mechanical adaptation”demonstrated that administration of L-arginine enhanced bone mechanical adap...A recent study published in Cell Metabolism entitled“Gut microbial alterations in arginine metabolism determine bone mechanical adaptation”demonstrated that administration of L-arginine enhanced bone mechanical adaptation by activating a nitric oxide-calcium feedback loop in osteocytes.The findings revealed that mechanical regulation of bone adaptation is associated with gut microbiota.The underlying cause of heterogeneity of bone mechanoresponsiveness was the significant difference in the composition of the gut microbiota,in which the family Lachnospiraceae contributed to the inter-individual high variability in bone mechanical adaptation.Additionally,administration of Lachnospiraceae exhibited increased expression levels of L-citrulline and L-arginine and enhanced bone mechanoresponsiveness in recipients.Collectively,this study provides mechanistic insights into inter-individual variability of the gut microbial,which is related to the heterogeneity of bone mechanical adaptation and provides a novel preventive and therapeutic strategy to anti-osteoporotic for maximizing bone mechanoresponsiveness via the microbiota-metabolite axis.展开更多
This review summarizes the anti-depressant mechanisms of repetitive transcranial magnetic stimulation in preclinical studies,including anti-inflammatory effects mediated by activation of nuclear factor-E2-related fact...This review summarizes the anti-depressant mechanisms of repetitive transcranial magnetic stimulation in preclinical studies,including anti-inflammatory effects mediated by activation of nuclear factor-E2-related factor 2 signaling pathway,anti-oxidative stress effects,enhancement of synaptic plasticity and neurogenesis via activation of the endocannabinoid system and brain derived neurotrophic factor signaling pathway,increasing the content of monoamine neurotransmitters via inhibition of Sirtuin 1/monoamine oxidase A signaling pathway,and reducing the activity of the hypothalamic-pituitary-adrenocortical axis.We also discuss the shortcomings of transcranial magnetic stimulation in preclinical studies such as inaccurate positioning,shallow depth of stimulation,and difficulty in elucidating the neural circuit mechanism up-and down-stream of the stimulation target brain region.展开更多
Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for ca...Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.展开更多
During the process of directional solidification,laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets,or die-upsetting of nano-composites,the arrangements of the easy-magnetiz...During the process of directional solidification,laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets,or die-upsetting of nano-composites,the arrangements of the easy-magnetization-axes of the hard magnetic phases(Nd2Fe14B,SmCo5 or Sm2Co17 type)in their designed directions have been studied.In Fe-Pt nano-composite magnets,attempts have been taken to promote phase transformation from disordered,soft magnetic A1 to ordered,hard magnetic L10 FePt phase at reduced temperatures.The dependence of the magnetization and reversal magnetization processes on the microstructures,involving the morphology and three critical sizes of particles of the FePt nano-composite magnets,are summarized. With the decrease of the nominal thickness of the anisotropic FePt film epitaxially grown on the single crystal MgO(001)substrate, the reversal magnetization process firstly changes from full domain wall displacement to partial magnetic wall pinning related to the morphology change,where the coercive force increases abruptly.The reversal magnetization process secondly changes from magnetic wall pinning to incoherent magnetization rotation associated with the particles being below the first critical size at which multi-domain particles turn into single domain ones,where the coercive force is still increased.And the reversal magnetization mode thirdly changes from incoherent to coherent rotation referred to the second critical size,where the increase of the coercive force keeps on.However,when the particle size decreases to approach the third critical size where the particles turn into the supperparamagnetic state,the coercive force begins to decrease due to the interplay of the size effect and the incomplete ordering induced by the size effect.Meanwhile,due to the size effect,Curie temperature of the ultra-small FePt particles reduces.展开更多
The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transf...The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.展开更多
文摘A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.
基金The Sixth Batch of Special Support Plans in Anhui Province(No.dlPtzjh20200050)Key Natural Science Research Project of Higher Education Institutions in Anhui Province(No.KJ2020A0426)。
文摘Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis.
文摘<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""><span style="font-family:Verdana;"> To evaluate intraobserver and interobserver reliability of the measurement of the mechanical axis of the lower limb by means of the panoramic radiograph of lower limbs by physicians with different levels of medical practice. </span><b><span style="font-family:Verdana;">Method:</span></b> </span><span style="font-family:Verdana;">A</span><span style="font-family:""><span style="font-family:Verdana;"> retrospective cross-sectional study with preoperative and postoperative radiographic analysis of a group of 100 patients submitted to total knee arthroplasty.</span><b><span style="font-family:Verdana;"> Results: </span></b></span><span style="font-family:Verdana;">I</span><span style="font-family:""><span style="font-family:Verdana;">t was observed that there is a highly significant intraobserver and interobserver agreement (p < 0.0001), both preoperatively and postoperatively, among four observers with different training levels. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The panoramic radiograph of the lower limbs is a reliable method for measuring the mechanical axis of the lower limb in patients submitted to total knee arthroplasty, regardless of the level of medical practice of the evaluator.
文摘Introduction: Accurate postoperative alignment and implant positioning are determinant factors for successful total knee arthroplasty (TKA). Patient-specific template (PST) is a technique that uses computer technology for the planning, deigning and production of cutting guides. This study aims to compare PST to conventional technique in terms of mechanical axis alignment and component positioning. Patients and method: 109 TKA were performed for 78 patients in 2 groups. Group A included 69 conventional TKA in 55 patients and Group B included 40 patient-specific TKA in 23 patient. Postoperative long-film X-rays were done for all patients to observe the mechanical axis, anatomical axis, lateral distal femoral mechanical angle and medial proximal tibial angle. Results: No statistically significant difference was found between the two groups regarding alignment or component positioning. Conclusion: Both techniques have shown similar results in restoring the mechanical axis and alignment after TKA. However, PST had the advantages of reduced blood loss and shorter operative time.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.
基金supported by the National Natural Science Foundation of China(Grant No.51106034)the Central Universities Fundamental Research Foundation(Grant No.HEUCFR1104)the Marine Renewable Energy Special Foundation(Grant Nos.ZJME2010CY01 and ZJME2010GC01)
文摘The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
基金supported by the National Key Research and Development Program(2021YFE0190100)National Natural Science Foundation of China(81760776,81874336)。
文摘Food-microbiota-host interactions provide an overarching framework for understanding the function of the gut microbiota axis.Diet is a major modulator of gut microbiota.Plant-based foods are rich in phytochemicals;therefore,it is essential to assess such foods and elucidate the mechanisms underlying their action.In this review,we summarize the role of gut microbiota in the communication between the gut and the brain,liver,lung,kidney,and joints,as well as the role of the gut microbiota axis in diseases involving these organs.In addition,we assess the effects of phytochemicals from plant-based foods on the gut microbiota axis via different pathways.
基金the National Natural Science Foundation of China(Grant Nos.U1706227 and 51979063)the Harbin Applied Technology Research and Development Project(Grant No.2015RQXXJ016)the Basic Research and Cutting-Edge Technology Projects of State Administration of Science(Grant No.JCKY2019604C003).
文摘A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed.The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine,and the three-dimensional model of the turbine is established.Kinematics analysis of the eccentric disc pitch control mechanism is carried out.Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived.Kinematics analysis and simulation are carried out,and the motion law of the corresponding mechanical system is obtained.By analyzing the force and motion of blade of VEVT,the expressions of the important parameters such as deflection angle,attack angle and energy utilization coefficient are obtained.The lateral induced velocity coefficient is acquired by momentum theorem,the hydrodynamic parameters such as energy utilization coefficient are derived,and the hydrodynamic characteristics of VEVT are also obtained.The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions,which verifies that VEVT has good self-startup performance and high energy capture efficiency.
文摘Crack growth resistance plays a different role in crashworthiness analysis since the progressive energy absorption is based on controllable fracture mechanisms. In this regard, the present paper studies the efficient crack growth resistance in off-axis crushing of composite tubular structures by implementing natural fiber yarns. One of the through-to-thickness reinforcement methods known as stitching has been chosen to influence the axial and off-axis crushing process. Improving the crack growth resistance and appropriate fiber breakage at different stages of crushing process can significantly improve the resistance force and consequently the energy absorption capability of composite absorbers in axial and off-axis crushing. This analysis will be applied to non-stitched and stitched CFRP composite boxes which showed brittle fracture and transverse shearing crushing modes under off-axis loading of 10 degrees. The analytical methods are also implemented to analysze the effect of various failure mechanisms such as bending, friction, bundle fracture, and interlaminar crack growth for the observed crushing modes. The proposed model is able to predict the crushing load and crush force efficiency in close agreement from experimental studies.
文摘A recent study published in Cell Metabolism entitled“Gut microbial alterations in arginine metabolism determine bone mechanical adaptation”demonstrated that administration of L-arginine enhanced bone mechanical adaptation by activating a nitric oxide-calcium feedback loop in osteocytes.The findings revealed that mechanical regulation of bone adaptation is associated with gut microbiota.The underlying cause of heterogeneity of bone mechanoresponsiveness was the significant difference in the composition of the gut microbiota,in which the family Lachnospiraceae contributed to the inter-individual high variability in bone mechanical adaptation.Additionally,administration of Lachnospiraceae exhibited increased expression levels of L-citrulline and L-arginine and enhanced bone mechanoresponsiveness in recipients.Collectively,this study provides mechanistic insights into inter-individual variability of the gut microbial,which is related to the heterogeneity of bone mechanical adaptation and provides a novel preventive and therapeutic strategy to anti-osteoporotic for maximizing bone mechanoresponsiveness via the microbiota-metabolite axis.
基金National Key R and D Program of China,No.2016YFC1306700The Key Projects of National Natural Science Foundation of China,No.81830040+1 种基金Science and Technology Program of Guangdong,China,No.2018B030334001Program of Excellent Talents in Medical Science of Jiangsu Province,China,No.JCRCA2016006.
文摘This review summarizes the anti-depressant mechanisms of repetitive transcranial magnetic stimulation in preclinical studies,including anti-inflammatory effects mediated by activation of nuclear factor-E2-related factor 2 signaling pathway,anti-oxidative stress effects,enhancement of synaptic plasticity and neurogenesis via activation of the endocannabinoid system and brain derived neurotrophic factor signaling pathway,increasing the content of monoamine neurotransmitters via inhibition of Sirtuin 1/monoamine oxidase A signaling pathway,and reducing the activity of the hypothalamic-pituitary-adrenocortical axis.We also discuss the shortcomings of transcranial magnetic stimulation in preclinical studies such as inaccurate positioning,shallow depth of stimulation,and difficulty in elucidating the neural circuit mechanism up-and down-stream of the stimulation target brain region.
基金State Key Basic Research Development Program (2004CB418404) and the Joint Seismological Science Foundation of China (105004).
文摘Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.
基金Project(2004CCA04000)supported by the National Basic Research Program of ChinaProject(50744014)supported by the National Natural Science Foundation of China+3 种基金Project(2008C21046)supported by Science and Technology Department of Zhejiang Province,ChinaProject(Y406389)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(2006B100054)supported by Ningbo Bureau of Science and Technology,ChinaProject supported by K.C.Wong Magna Found in Ningbo University,China
文摘During the process of directional solidification,laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets,or die-upsetting of nano-composites,the arrangements of the easy-magnetization-axes of the hard magnetic phases(Nd2Fe14B,SmCo5 or Sm2Co17 type)in their designed directions have been studied.In Fe-Pt nano-composite magnets,attempts have been taken to promote phase transformation from disordered,soft magnetic A1 to ordered,hard magnetic L10 FePt phase at reduced temperatures.The dependence of the magnetization and reversal magnetization processes on the microstructures,involving the morphology and three critical sizes of particles of the FePt nano-composite magnets,are summarized. With the decrease of the nominal thickness of the anisotropic FePt film epitaxially grown on the single crystal MgO(001)substrate, the reversal magnetization process firstly changes from full domain wall displacement to partial magnetic wall pinning related to the morphology change,where the coercive force increases abruptly.The reversal magnetization process secondly changes from magnetic wall pinning to incoherent magnetization rotation associated with the particles being below the first critical size at which multi-domain particles turn into single domain ones,where the coercive force is still increased.And the reversal magnetization mode thirdly changes from incoherent to coherent rotation referred to the second critical size,where the increase of the coercive force keeps on.However,when the particle size decreases to approach the third critical size where the particles turn into the supperparamagnetic state,the coercive force begins to decrease due to the interplay of the size effect and the incomplete ordering induced by the size effect.Meanwhile,due to the size effect,Curie temperature of the ultra-small FePt particles reduces.
文摘The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.