Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones (FCZs), as it represents the physical self-purification capability via tidal exchange with clean water ...Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones (FCZs), as it represents the physical self-purification capability via tidal exchange with clean water in the outer sea. However, owing to the temporal and spatial complexity of the coastal flushing process, existing methods for determining flushing time may not be generally applicable. In this paper, a systematic method for determining the flushing time in FCZs is presented, in which bathymetry, runoff, tidal range and stratification are properly accounted for. We determine the flushing time via numerical tracer experiments, using robust 3D hydrodynamic and mass transport models. For FCZs located in sheltered and land-locked tidal inlets, the system boundary can be naturally defined at the connection with the open sea. For FCZs located in open'waters, hydrodynamic tracking is first used to assess the extent of tidal excursion and thus delimit the initial boundary between clean water and polluted water. This general method is applied to all designated marine FCZs in Hong Kong for both the dry and wet seasons, including 20 sheltered FCZs (in semi-enclosed waters of Tolo Harbour, Mirs Bay, and Port Shelter) and 6 FCZs in open waters. Our results show that flushing time is the longest in inner Port Shelter (about 40 days in dry season), and the shortest for the FCZs in open waters (less than one week in dry season). In addition, the flushing time in dry season is commonly longer than that in wet season: 20%~40% for most well-sheltered FCZs; 2.6-4 times for the others. Our results indicate a positive correlation between the flushing time and distance to open boundary, supporting the view that the flushing time of a FCZ is closely related to its location. This study provides a solid basis for mariculture management such as the determination of carrying capacity of FCZs.展开更多
A numerical model was developed to investigate salinity distribution in the Yura Estuary, a micro tidal estuary in Japan. The model results show that the salinity distribution as represented by salt wedge intrusion ag...A numerical model was developed to investigate salinity distribution in the Yura Estuary, a micro tidal estuary in Japan. The model results show that the salinity distribution as represented by salt wedge intrusion agreed well with field observations. In addition to the seasonal variation, the salt wedge responds over short time scales according to the flood events. The retreat of the salt wedge is dependent on the scale of the river discharge;the salt wedge moved back and disappeared from the estuary when over250 m3·s-1 of fresh water was discharged from the estuary and it takes ~11 days for salt wedge to recover from the fresh water discharge event. The Yura Estuary has on average three floods during summer, this coincides with when phytoplankton is most productive in the river and indicates that the short temporal variations in the river discharge has important effects not only on the hydrodynamics, but also on the ecosystem in the estuary.展开更多
It is important to understand the relationship between the ambient ebb and flood currents and the electricity generated by tidal stream power generators to minimise investment risk and to optimise power generation for...It is important to understand the relationship between the ambient ebb and flood currents and the electricity generated by tidal stream power generators to minimise investment risk and to optimise power generation for distribution purposes. Such analyses no longer rely on average descriptions of the flow field or on single values for the device efficiency. In the present paper, we demonstrate a new method involving the integration of synthesised long termflow vectors with logistic descriptions of the device power curves. New experiments are then described with the Neptune Proteus vertical axis tidal stream power generator involving tow tests at speeds to 1.5 ms–1 in William Wright Dock on the Humber. The results are used to derive appropriate coefficients in the logisticcurve and to estimate the device’s annual electrical output.展开更多
基金supported by the Hong Kong Jockey Club Charities Trust (Project Waterman)in part by a grant from the University Grants Committee of the Hong Kong Special Administrative Region (HKSAR),China (Project No. AoE/P-04/04) to the Area of Excellence in Marine Environment Research and Innovative Technology (MERIT)+1 种基金The support from the National Science Fund for Distinguished Young Scholars (Grant No. 50925932)the National Natural Science Foundation of China (Grant No.41001348)
文摘Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones (FCZs), as it represents the physical self-purification capability via tidal exchange with clean water in the outer sea. However, owing to the temporal and spatial complexity of the coastal flushing process, existing methods for determining flushing time may not be generally applicable. In this paper, a systematic method for determining the flushing time in FCZs is presented, in which bathymetry, runoff, tidal range and stratification are properly accounted for. We determine the flushing time via numerical tracer experiments, using robust 3D hydrodynamic and mass transport models. For FCZs located in sheltered and land-locked tidal inlets, the system boundary can be naturally defined at the connection with the open sea. For FCZs located in open'waters, hydrodynamic tracking is first used to assess the extent of tidal excursion and thus delimit the initial boundary between clean water and polluted water. This general method is applied to all designated marine FCZs in Hong Kong for both the dry and wet seasons, including 20 sheltered FCZs (in semi-enclosed waters of Tolo Harbour, Mirs Bay, and Port Shelter) and 6 FCZs in open waters. Our results show that flushing time is the longest in inner Port Shelter (about 40 days in dry season), and the shortest for the FCZs in open waters (less than one week in dry season). In addition, the flushing time in dry season is commonly longer than that in wet season: 20%~40% for most well-sheltered FCZs; 2.6-4 times for the others. Our results indicate a positive correlation between the flushing time and distance to open boundary, supporting the view that the flushing time of a FCZ is closely related to its location. This study provides a solid basis for mariculture management such as the determination of carrying capacity of FCZs.
文摘A numerical model was developed to investigate salinity distribution in the Yura Estuary, a micro tidal estuary in Japan. The model results show that the salinity distribution as represented by salt wedge intrusion agreed well with field observations. In addition to the seasonal variation, the salt wedge responds over short time scales according to the flood events. The retreat of the salt wedge is dependent on the scale of the river discharge;the salt wedge moved back and disappeared from the estuary when over250 m3·s-1 of fresh water was discharged from the estuary and it takes ~11 days for salt wedge to recover from the fresh water discharge event. The Yura Estuary has on average three floods during summer, this coincides with when phytoplankton is most productive in the river and indicates that the short temporal variations in the river discharge has important effects not only on the hydrodynamics, but also on the ecosystem in the estuary.
文摘It is important to understand the relationship between the ambient ebb and flood currents and the electricity generated by tidal stream power generators to minimise investment risk and to optimise power generation for distribution purposes. Such analyses no longer rely on average descriptions of the flow field or on single values for the device efficiency. In the present paper, we demonstrate a new method involving the integration of synthesised long termflow vectors with logistic descriptions of the device power curves. New experiments are then described with the Neptune Proteus vertical axis tidal stream power generator involving tow tests at speeds to 1.5 ms–1 in William Wright Dock on the Humber. The results are used to derive appropriate coefficients in the logisticcurve and to estimate the device’s annual electrical output.